Optimal Stopping of the Maximum Process : The Maximality Principle G

The solution is found to the optimal stopping problem with payoff sup E(S τ - ∫ 0 T c(X i )dt) where S = (S t ) t≥0 is the maximum process associated with the one-dimensional time-homogeneous diffusion X = (X t ) t≥0 , the function x → c(x) is positive and continuous, and the supremum is taken over all stopping times τ of X for which the integral has finite expectation. It is proved, under no extra conditions, that this problem has a solution; that is, the payoff is finite and there is an optimal stopping time, if and only if the following maximality principle holds: the first-order nonlinear differential equation g'(s) = σ 2 (g(s))L'(g(s))/2c(g(s))(L(R)-L(g(s))) admits a maximal solution s → g * (s) which stays strictly below the diagonal in R 2 . [In this equation x → σ(x) is the diffusion coefficient and x → L(x) the scale function of X.] In this case the stopping time τ * = inf{t > 0 | X t < g * (S t )} is proved optimal, and explicit formulas for the payoff are given. The result has a large number of applications and may be viewed as the cornerstone in a general treatment of the maximum process.

[1]  Albert N. Shiryaev,et al.  Two problems of sequential analysis , 1967 .

[2]  Lester E. Dubins,et al.  On the distribution of maxima of martingales , 1978 .

[3]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[4]  J. Azéma,et al.  Une solution simple au probleme de Skorokhod , 1979 .

[5]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[6]  David C. Cox Some sharp martingale inequalities related to Doob's inequality , 1984 .

[7]  D. Gilat The best bound in the inequality of Hardy and Littlewood and its martingale counterpart , 1986 .

[8]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[9]  L. Dubins,et al.  A sharp inequality for sub-martingales and stopping-times , 1988 .

[10]  D. Gilat On the ratio of the expected maximum of a martingale and theLp-norm of its last term , 1988 .

[11]  Saul D. Jacka,et al.  Doob's inequalities revisited: A maximal H1-embedding , 1988 .

[12]  M. Yor DIFFUSIONS, MARKOV PROCESSES AND MARTINGALES: Volume 2: Itô Calculus , 1989 .

[13]  S. Jacka,et al.  Optimal Stopping and Best Constants for Doob-like Inequalities I: The Case $p = 1$ , 1991 .

[14]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[15]  D. Burkholder,et al.  Explorations in martingale theory and its applications , 1991 .

[16]  Larry A Shepp,et al.  The Russian Option: Reduced Regret , 1993 .

[17]  A. Shiryaev,et al.  Optimal Stopping Rules and Maximal Inequalities for Bessel Processes , 1994 .

[18]  On Wald-Type Optimal Stopping for Brownian Motion , 1994 .

[19]  Larry A Shepp,et al.  A New Look at Pricing of the ”Russian Option“ , 1995 .

[20]  S. Graversen,et al.  On wald-type optimal stopping for Brownian motion , 1997, Journal of Applied Probability.

[21]  S. Graversen,et al.  On Doob's maximal inequality for Brownian motion , 1997 .

[22]  Goran Peskir Optimal stopping inequalities for the integral of Brownian paths , 1998 .

[23]  Optimal Stopping and Maximal Inequalities for Linear Diffusions , 1998 .

[24]  J. L. Pedersen,et al.  Computing the expectation of the Azéma-Yor stopping times , 1998 .

[25]  The Best Doob-Type Bounds for the Maximum of Brownian Paths , 1998 .

[26]  S. Graversen,et al.  Optimal stopping and maximal inequalities for geometric Brownian motion , 1998, Journal of Applied Probability.

[27]  Optimal Stopping in the L log L‐Inequality of Hardy and Littlewood , 1998 .

[28]  G. S.E.,et al.  Optimal Stopping and Maximal Inequalities for Geometric Brownian Motion , 1998 .

[29]  G. Peskir Designing options given the risk: the optimal Skorokhod-embedding problem , 1999 .

[30]  Best Bounds in Doob's Maximal Inequality for Bessel Processes , 2000 .