The Bezoutian and the eigenvalue-separation problem for matrix polynomials

A generalized Bezout matrix for a pair of matrix polynomials is studied and, in particular, the structure of its kernel is described and the relations to the greatest common divisor of the given matrix polynomials are presented. The classical root-separation problems of Hermite, Routh-Hurwitz and Schur-Cohn are solved for matrix polynomials in terms of this Bezout matrix. The eigenvalue-separation results are also expressed in terms of Hankel matrices whose entries are Markov parameters of rational matrix function. Some applications of Jacobi's method to these problems are pointed out.

[1]  M. A. Kaashoek,et al.  Spectral analysis of families of operator polynomials and a generalized Vandermonde matrix II: The infinite dimensional case , 1978 .

[2]  Biswa Nath Datta,et al.  On the Routh-Hurwitz-Fujiwara and the Schur-Cohn-Fujiwara theorems for the root-separation problem , 1978 .

[3]  O. Taussky Matrices C with Cn → 0 , 1964 .

[4]  R. E. Kalman,et al.  On the Hermite-Fujiwara theorem in stability theory , 1965 .

[5]  W. D. Ray Matrices in control theory , 1984 .

[6]  Review: Calvin H. Wilcox, Scattering theory for the d'Alembert equation in exterior domains , 1976 .

[7]  Biswa Nath Datta,et al.  The Lyapunov matrix equation SA+A∗S=S∗B∗BS , 1979 .

[8]  The concepts of a Bezoutiant and a resolvent for operator bundles , 1977 .

[9]  Brian D. O. Anderson,et al.  Generalized Bezoutian and Sylvester matrices in multivariable linear control , 1976 .

[10]  C.-C. Wang,et al.  On the radial oscillations of a spherical thin shell in the finite elasticity theory , 1965 .

[11]  Alston S. Householder,et al.  Bezoutiants, Elimination and Localization , 1970 .

[12]  B. Datta Application of Hankel matrices of Markov Parameters to the solutions of the Routh-Hurwitz and the Schur-Cohn problems , 1979 .

[13]  Stephen Barnett,et al.  Introduction to Mathematical Control Theory , 1975 .

[14]  P. Lancaster,et al.  Problems of control and information theory (Hungary) , 1980 .

[15]  P. Stein Some general theorems on iterants , 1952 .

[16]  Naftali Kravitsky,et al.  On the discriminant function of two commuting nonselfadjoint operators , 1980 .

[17]  L. Bittner S. H. Lehnigk, Stability Theorems For Linear Motions. (International Series in Applied Mathematics.) XI + 251 S. m. Fig. Englewood Cliffs. N. J. 1966. Prentice‐Hall, Inc. Preis geb. 96.– s. net , 1971 .

[18]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[19]  M. Marden Geometry of Polynomials , 1970 .

[20]  Hans Schneider,et al.  Inertia theorems for matrices: The semidefinite case , 1963 .

[21]  D. Youla,et al.  On the factorization of rational matrices , 1961, IRE Trans. Inf. Theory.

[22]  B. Anderson An algebraic solution to the spectral factorization problem , 1967, IEEE Transactions on Automatic Control.

[23]  M. Naimark,et al.  The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations , 1981 .

[24]  Leiba Rodman,et al.  Spectral analysis of matrix polynomials— I. canonical forms and divisors , 1978 .

[25]  S. Barnett,et al.  A Note on the Bezoutian Matrix , 1972 .

[26]  B. Datta,et al.  Matrix equation, matrix polynomial and the number of zeros of a polynomial inside the unit circle , 1980 .

[27]  L. Rodman,et al.  Stable factorization of operator polynomials, I. Spectral divisors simply behaved at infinity , 1980 .

[28]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[29]  I. Gohberg,et al.  AN OPERATOR GENERALIZATION OF THE LOGARITHMIC RESIDUE THEOREM AND THE THEOREM OF ROUCHÉ , 1971 .

[30]  Leiba Rodman,et al.  Common multiples and common divisors of matrix polynomials, II. Vandermonde and resultant matrices , 1982 .

[31]  P. Lancaster,et al.  Spectral analysis of matrix polynomials— II. The resolvent form and spectral divisors , 1978 .

[32]  D. Djoković,et al.  Products of reflections in the general linear group over a division ring , 1979 .

[33]  F. R. Gantmakher The Theory of Matrices , 1984 .

[34]  M. Fujiwara,et al.  Über die algebraischen Gleichungen, deren Wurzeln in einem Kreise oder in einer Halbebene liegen , 1926 .

[35]  Siegfried H Lehnigk,et al.  Stability theorems for linear motions : with an introduction to Liapunov's direct method , 1966 .

[36]  S. Barnett Location of zeros of a complex polynomial , 1971 .

[37]  L. Rodman,et al.  On spectral analysis of non-monic matrix and operator polynomials, I. Reduction to monic polynomials , 1978 .

[38]  B. Anderson,et al.  Greatest common divisor via generalized Sylvester and Bezout matrices , 1978 .

[39]  L. Rodman,et al.  On spectral analysis of non-monic matrix and operator polynomials, II. Dependence on the finite spectral data , 1978 .

[40]  L. E. Lerer,et al.  Resultants of matrix polynomials , 1976 .

[41]  S. Barnett,et al.  Number of zeros of a complex polynomial inside the unit circle , 1970 .