A class of smoothing functions for nonlinear and mixed complementarity problems

We propose a class of parametric smooth functions that approximate the fundamental plus function, (x)+=max{0, x}, by twice integrating a probability density function. This leads to classes of smooth parametric nonlinear equation approximations of nonlinear and mixed complementarity problems (NCPs and MCPs). For any solvable NCP or MCP, existence of an arbitrarily accurate solution to the smooth nonlinear equations as well as the NCP or MCP, is established for sufficiently large value of a smoothing parameter α. Newton-based algorithms are proposed for the smooth problem. For strongly monotone NCPs, global convergence and local quadratic convergence are established. For solvable monotone NCPs, each accumulation point of the proposed algorithms solves the smooth problem. Exact solutions of our smooth nonlinear equation for various values of the parameter α, generate an interior path, which is different from the central path for interior point method. Computational results for 52 test problems compare favorably with these for another Newton-based method. The smooth technique is capable of solving efficiently the test problems solved by Dirkse and Ferris [6], Harker and Xiao [11] and Pang & Gabriel [28].

[1]  S. Venit,et al.  Numerical Analysis: A Second Course. , 1974 .

[2]  S. M. Robinson Generalized equations and their solutions, Part I: Basic theory , 1979 .

[3]  N. Josephy Newton's Method for Generalized Equations. , 1979 .

[4]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[5]  Israel Zang,et al.  A smoothing-out technique for min—max optimization , 1980, Math. Program..

[6]  G. Mitra Variational Inequalities and Complementarity Problems — Theory and Application , 1980 .

[7]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[8]  D. Bertsekas Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[9]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[10]  Michael A. Saunders,et al.  MINOS 5. 0 user's guide , 1983 .

[11]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[12]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[13]  Shinji Mizuno,et al.  A polynomial-time algorithm for a class of linear complementarity problems , 1989, Math. Program..

[14]  Patrick T. Harker,et al.  Newton's method for the nonlinear complementarity problem: A B-differentiable equation approach , 1990, Math. Program..

[15]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[16]  Jong-Shi Pang,et al.  Newton's Method for B-Differentiable Equations , 1990, Math. Oper. Res..

[17]  Jong-Shi Pang,et al.  A B-differentiable equation-based, globally and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems , 1991, Math. Program..

[18]  N. Megiddo,et al.  The Relation Between the Path of Centers and Smale's Regularization of the Linear Programming Problem , 1991 .

[19]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[20]  Reuven Y. Rubinstein,et al.  Nondifferentiable optimization via smooth approximation: General analytical approach , 1992, Ann. Oper. Res..

[21]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[22]  Olvi L. Mangasarian,et al.  Mathematical Programming in Neural Networks , 1993, INFORMS J. Comput..

[23]  Jong-Shi Pang,et al.  NE/SQP: A robust algorithm for the nonlinear complementarity problem , 1993, Math. Program..

[24]  Kaj Madsen,et al.  A Finite Smoothing Algorithm for Linear l1 Estimation , 1993, SIAM J. Optim..

[25]  T. Rutherford MILES: A Mixed Inequality and nonLinear Equation Solver , 1993 .

[26]  Bintong Chen,et al.  A Non-Interior-Point Continuation Method for Linear Complementarity Problems , 1993, SIAM J. Matrix Anal. Appl..

[27]  Yinyu Ye,et al.  A Fully Polynomial-Time Approximation Algorithm for Computing a Stationary Point of the General Linear Complementarity Problem , 1993, Math. Oper. Res..

[28]  Daniel Ralph,et al.  Global Convergence of Damped Newton's Method for Nonsmooth Equations via the Path Search , 1994, Math. Oper. Res..

[29]  Michael C. Ferris,et al.  The GAMS Callable Program Library for Variational and Complementarity Solvers , 1994 .

[30]  Mustafa Ç. Pinar,et al.  On Smoothing Exact Penalty Functions for Convex Constrained Optimization , 1994, SIAM J. Optim..

[31]  S. M. Robinson Newton's method for a class of nonsmooth functions , 1994 .

[32]  M. Ferris,et al.  The Path Solver : A Non-Monotone StabilizationScheme for Mixed Complementarity , 1995 .

[33]  Olvi L. Mangasarian,et al.  Smoothing methods for convex inequalities and linear complementarity problems , 1995, Math. Program..

[34]  S. Dirkse,et al.  Mcplib: a collection of nonlinear mixed complementarity problems , 1995 .

[35]  Olvi L. Mangasarian,et al.  The Extended Linear Complementarity Problem , 1995, SIAM J. Matrix Anal. Appl..

[36]  B. De Moor,et al.  The extended linear complementarity problem , 1995, Math. Program..

[37]  Jorge J. Moré,et al.  Global Methods for Nonlinear Complementarity Problems , 1994, Math. Oper. Res..