The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part I: Model Description and Global Climatology

Abstract The atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is described and an assessment of its mean climatology presented. HadGEM1 includes substantially improved representations of physical processes, increased functionality, and higher resolution than its predecessor, the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3). Major developments are the use of semi-Lagrangian instead of Eulerian advection for both dynamical and tracer fields; new boundary layer, gravity wave drag, microphysics, and sea ice schemes; and major changes to the convection, land surface (including tiled surface characteristics), and cloud schemes. There is better coupling between the atmosphere, land, ocean, and sea ice subcomponents and the model includes an interactive aerosol scheme, representing both the first and second indirect effects. Particular focus has been placed on improving the processes (such as clouds and aerosol) that are most uncertain in proje...

[1]  J. Fritsch,et al.  Numerical Prediction of Convectively Driven Mesoscale Pressure Systems. Part I: Convective Parameterization , 1980 .

[2]  J. Fritsch,et al.  Numerical Prediction of Convectively Driven Mesoscale Pressure Systems. Part II. Mesoscale Model , 1980 .

[3]  Wilfred M. Post,et al.  Soil carbon pools and world life zones , 1982, Nature.

[4]  Peter H. Stone,et al.  Efficient Three-Dimensional Global Models for Climate Studies: Models I and II , 1983 .

[5]  A. Henderson‐sellers,et al.  A global archive of land cover and soils data for use in general circulation climate models , 1985 .

[6]  P. Rowntree,et al.  A Mass Flux Convection Scheme with Representation of Cloud Ensemble Characteristics and Stability-Dependent Closure , 1990 .

[7]  D. Legates,et al.  Mean seasonal and spatial variability in global surface air temperature , 1990 .

[8]  R. Smith A scheme for predicting layer clouds and their water content in a general circulation model , 1990 .

[9]  B. Barkstrom,et al.  Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment , 1990 .

[10]  M. Iacono,et al.  Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor , 1992 .

[11]  Daniel J. Jacob,et al.  Global inventory of sulfur emissions with 1°×1° resolution , 1992 .

[12]  James M. Russell,et al.  The Halogen Occultation Experiment , 1993 .

[13]  M. J. P. Cullen,et al.  The unified forecast/climate model , 1993 .

[14]  John F. B. Mitchell,et al.  Carbon Dioxide and Climate. The Impact of Cloud Parameterization , 1993 .

[15]  A. Lacis,et al.  Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data. , 1994 .

[16]  D. W. Johnson,et al.  The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds , 1994 .

[17]  J. Kiehl On the Observed Near Cancellation between Longwave and Shortwave Cloud Forcing in Tropical Regions , 1994 .

[18]  Thomas M. Smith,et al.  A global land primary productivity and phytogeography model , 1995 .

[19]  Zhanqing Li,et al.  Improved Simulation of Clear-Sky Shortwave Radiative Transfer in the CCC-GCM , 1995 .

[20]  D. Gregory A Consistent Treatment of the Evaporation of Rain and Snow for Use in Large-Scale Models , 1995 .

[21]  A. Slingo,et al.  Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model , 1996 .

[22]  P. Mote,et al.  An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor , 1996 .

[23]  D. Gregory,et al.  Parametrization of momentum transport by convection. II: Tests in single‐column and general circulation models , 1997 .

[24]  D. Stevenson,et al.  Tropospheric Ozone in a Global-Scale Three-Dimensional Lagrangian Model and Its Response to NOX Emission Controls , 1997 .

[25]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[26]  James J. Hack,et al.  Response of Climate Simulation to a New Convective Parameterization in the National Center for Atmospheric Research Community Climate Model (CCM3) , 1998 .

[27]  G. J. Shutts,et al.  A new gravity‐wave‐drag scheme incorporating anisotropic orography and low‐level wave breaking: Impact upon the climate of the UK Meteorological Office Unified Model , 1998 .

[28]  R. Andres,et al.  A time‐averaged inventory of subaerial volcanic sulfur emissions , 1998 .

[29]  R. Welch,et al.  Global variation of column droplet concentration in low‐level clouds , 1998 .

[30]  T. Oki,et al.  Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network , 1998 .

[31]  J. Crowther,et al.  Investigating k distribution methods for parameterizing gaseous absorption in the Hadley Centre Climate Model , 1999 .

[32]  W. Randel,et al.  A stratospheric ozone trends data set for global modeling studies , 1999 .

[33]  The impact of vertical resolution upon GCM simulations of marine stratocumulus , 1999 .

[34]  S. M. Marlais,et al.  An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I) , 1999 .

[35]  C. Liousse,et al.  Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model , 1999 .

[36]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[37]  Giacomo R. DiTullio,et al.  A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month , 1999 .

[38]  R. Betts,et al.  The impact of new land surface physics on the GCM simulation of climate and climate sensitivity , 1999 .

[39]  Damian R. Wilson,et al.  A microphysically based precipitation scheme for the UK meteorological office unified model , 1999 .

[40]  Randel,et al.  Trends in the vertical distribution of ozone , 1999, Science.

[41]  T. L. Schneider,et al.  Climate forcing due to tropospheric and stratospheric ozone , 1999 .

[42]  A. Brown,et al.  A similarity hypothesis for shallow‐cumulus transports , 1999 .

[43]  S. Klein,et al.  Validation and Sensitivities of Frontal Clouds Simulated by the ECMWF Model , 1999 .

[44]  Adrian Lock,et al.  A New Boundary Layer Mixing Scheme. Part II: Tests in Climate and Mesoscale Models , 2000 .

[45]  John F. B. Mitchell,et al.  The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments , 2000 .

[46]  V. Pope,et al.  The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3 , 2000 .

[47]  G. Martin,et al.  A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests , 2000 .

[48]  David L. Mitchell,et al.  Impact of a new scheme for optical properties of ice crystals on climates of two GCMs , 2000 .

[49]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[50]  John C. King,et al.  Sensitivity of modelled Antarctic climate to surface and boundary‐layer flux parametrizations , 2001 .

[51]  A. Lock The Numerical Representation of Entrainment in Parameterizations of Boundary Layer Turbulent Mixing , 2001 .

[52]  A. Grant,et al.  Cloud‐base fluxes in the cumulus‐capped boundary layer , 2001 .

[53]  M. Collins,et al.  Projections of future climate change , 2002 .

[54]  J. Slingo,et al.  The Diurnal Cycle in the Tropics , 2001 .

[55]  S. Bony,et al.  Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models , 2001 .

[56]  V. Pope,et al.  The representation of water vapor and its dependence on vertical resolution in the Hadley Centre Climate Model , 2001 .

[57]  Andrew S. Jones,et al.  Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle , 2001 .

[58]  A. R. Gregory,et al.  The sensitivity of a model's stratospheric tape recorder to the choice of advection scheme , 2002 .

[59]  F. Chauvin,et al.  Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosols , 2002 .

[60]  V. Pope,et al.  The processes governing horizontal resolution sensitivity in a climate model , 2002 .

[61]  Simulation of the Madden–Julian Oscillation in a Coupled General Circulation Model. Part I: Comparison with Observations and an Atmosphere-Only GCM , 2003 .

[62]  Stuart Webster,et al.  Improvements to the representation of orography in the Met Office Unified Model , 2003 .

[63]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[64]  Robert Joseph Andres,et al.  Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results , 2004 .

[65]  R. Colvile,et al.  Estimating the direct radiative forcing due to haze from the 1997 forest fires in Indonesia , 2004 .

[66]  David M. Lawrence,et al.  An annual cycle of vegetation in a GCM. Part I: implementation and impact on evaporation , 2004 .

[67]  Minghua Zhang,et al.  Evaluation of Clouds and Their Radiative Effects Simulated by the NCAR Community Atmospheric Model Against Satellite Observations , 2004 .

[68]  J. D. de Gouw,et al.  Measurement of peroxycarboxylic nitric anhydrides (PANs) during the ITCT 2K2 aircraft intensive experiment , 2004 .

[69]  M. Ringer,et al.  Evaluating climate model simulations of tropical cloud , 2004 .

[70]  Nigel Wood,et al.  Analysis of Parallel versus Sequential Splittings for Time-Stepping Physical Parameterizations , 2004 .

[71]  A. Jones,et al.  Climate sensitivity to black carbon aerosol from fossil fuel combustion , 2004 .

[72]  Seasonal forecast of tropical climate with coupled ocean’atmosphere general circulation models: on the respective role of the atmosphere and the ocean components in the drift of the surface temperature error , 2005 .

[73]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[74]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[75]  Gill Martin,et al.  The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of Variability and Regional Climate , 2006 .

[76]  Michel Crucifix,et al.  The new hadley centre climate model (HadGEM1) : Evaluation of coupled simulations , 2006 .

[77]  J. Edwards,et al.  Estimating the subgrid variance of saturation, and its parametrization for use in a gcm cloud scheme , 2007 .