LinkedSV for detection of mosaic structural variants from linked-read exome and genome sequencing data

[1]  Sergey Koren,et al.  A robust benchmark for germline structural variant detection , 2019, bioRxiv.

[2]  Heng Li,et al.  Fast and accurate long-read assembly with wtdbg2 , 2019, Nature Methods.

[3]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[4]  Michael C. Schatz,et al.  LRSim: A Linked-Reads Simulator Generating Insights for Better Genome Partitioning , 2017, Computational and structural biotechnology journal.

[5]  Benjamin J. Raphael,et al.  Identifying structural variants using linked-read sequencing data , 2017, bioRxiv.

[6]  Michael C. Schatz,et al.  Accurate detection of complex structural variations using single molecule sequencing , 2017, Nature Methods.

[7]  Jef D. Boeke,et al.  Structural variants caused by Alu insertions are associated with risks for many human diseases , 2017, Proceedings of the National Academy of Sciences.

[8]  Jonas Korlach,et al.  Discovery and genotyping of structural variation from long-read haploid genome sequence data , 2017, Genome research.

[9]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[10]  Joachim Weischenfeldt,et al.  SvABA: genome-wide detection of structural variants and indels by local assembly , 2018, Genome research.

[11]  L. Ding,et al.  novoBreak: local assembly for breakpoint detection in cancer genomes , 2016, Nature Methods.

[12]  Serafim Batzoglou,et al.  Genome-wide reconstruction of complex structural variants using read clouds , 2016, Nature Methods.

[13]  E. Eichler,et al.  Long-read sequencing and de novo assembly of a Chinese genome , 2016, Nature Communications.

[14]  J. Lupski,et al.  Mechanisms underlying structural variant formation in genomic disorders , 2016, Nature Reviews Genetics.

[15]  Hanlee P. Ji,et al.  Haplotyping germline and cancer genomes using high-throughput linked-read sequencing , 2015, Nature Biotechnology.

[16]  Russell E. Durrett,et al.  Assembly and diploid architecture of an individual human genome via single-molecule technologies , 2015, Nature Methods.

[17]  Heng Li,et al.  FermiKit: assembly-based variant calling for Illumina resequencing data , 2015, Bioinform..

[18]  Serafim Batzoglou,et al.  Read clouds uncover variation in complex regions of the human genome , 2015, RECOMB.

[19]  Mark J. P. Chaisson,et al.  Resolving the complexity of the human genome using single-molecule sequencing , 2014, Nature.

[20]  Anna Gambin,et al.  Genome-wide analyses of LINE–LINE-mediated nonallelic homologous recombination , 2015, Nucleic acids research.

[21]  J. Zook,et al.  Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls , 2013, Nature Biotechnology.

[22]  Jan O. Korbel,et al.  Phenotypic impact of genomic structural variation: insights from and for human disease , 2013, Nature Reviews Genetics.

[23]  Ryan M. Layer,et al.  LUMPY: a probabilistic framework for structural variant discovery , 2012, Genome Biology.

[24]  Thomas Zichner,et al.  DELLY: structural variant discovery by integrated paired-end and split-read analysis , 2012, Bioinform..

[25]  M. Gerstein,et al.  AlleleSeq: analysis of allele-specific expression and binding in a network framework , 2011, Molecular systems biology.

[26]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[27]  A. Børresen-Dale,et al.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES , 2009, Nature.

[28]  R. Wilson,et al.  BreakDancer: An algorithm for high resolution mapping of genomic structural variation , 2009, Nature Methods.

[29]  Kai Ye,et al.  Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads , 2009, Bioinform..

[30]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[31]  D. Bowen,et al.  Molecular characteristics of the intron 22 homologs of the coagulation factor VIII gene: an update , 2008, Journal of thrombosis and haemostasis : JTH.

[32]  Antony V. Cox,et al.  Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing , 2008, Nature Genetics.

[33]  B. Johansson,et al.  The impact of translocations and gene fusions on cancer causation , 2007, Nature Reviews Cancer.

[34]  E. Eichler,et al.  Segmental duplications and copy-number variation in the human genome. , 2005, American journal of human genetics.

[35]  E. Eichler,et al.  Shotgun sequence assembly and recent segmental duplications within the human genome , 2004, Nature.

[36]  Stylianos E. Antonarakis,et al.  Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A , 1993, Nature Genetics.

[37]  K. Johnson An Update. , 1984, Journal of food protection.