Selective Temporal Interactions Between Processing Streams with Differential Sensitivity for Colour and Luminance Contrast

Temporal interactions between spatially separated visual stimuli were investigated in human observers. Subjects had to judge whether briefly presented targets consisted of a single or a double flash. Simultaneous presentation of unattended single or double flash distractors impaired performance if target and distractor followed different time courses, confirming previous findings. This interference occurred only when targets had high luminance contrast or were isoluminant and when distractors had high or low luminance contrast, but not when targets had low luminance contrast or when distractors were isoluminant. Low luminance contrast distractors strongly influenced high luminance contrast targets but not vice versa. These results suggest that (i) information about the precise temporal structure of stimuli is conveyed preferentially by the luminance-sensitive magnocellular system; and (ii) that this information influences judgements on the temporal patterning of signals transmitted by the colour-sensitive parvocellular system.

[1]  C. R. Ingling,et al.  The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel , 1983, Vision Research.

[2]  J. B. Levitt,et al.  Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: Anatomy of interlaminar projections , 1994, Visual Neuroscience.

[3]  T. Albright,et al.  What happens if it changes color when it moves?: Psychophysical experiments on the nature of chromatic input to motion detectors , 1993, Vision Research.

[4]  J. Pokorny,et al.  Threshold temporal integration of chromatic stimuli , 1984, Vision Research.

[5]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[6]  Stuart Anstis,et al.  The contribution of color to motion in normal and color-deficient observers , 1991, Vision Research.

[7]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  N. Logothetis,et al.  Functions of the colour-opponent and broad-band channels of the visual system , 1990, Nature.

[9]  N. Logothetis,et al.  Role of the color-opponent and broad-band channels in vision , 1990, Visual Neuroscience.

[10]  Lawrence C. Sager,et al.  Perception of wholes and of their component parts: some configural superiority effects. , 1977, Journal of experimental psychology. Human perception and performance.

[11]  J. Maunsell,et al.  Functional visual streams , 1992, Current Biology.

[12]  V. S. Ramachandran,et al.  Phantom contours: A new class of visual patterns that selectively activates the magnocellular pathway in man , 1991 .

[13]  William H. Merigan,et al.  Spatio-temporal vision of macaques with severe loss of Pβ retinal ganglion cells , 1986, Vision Research.

[14]  John H. R. Maunsell,et al.  Physiological Evidence for Two Visual Subsystems , 1987 .

[15]  UTE LEONARDS,et al.  The Influence of Temporal Phase Differences on Texture Segmentation , 1996, Vision Research.

[16]  J. Maunsell,et al.  The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  Wolf Singer,et al.  Magno- and parvocellular processing streams support different segmentation mechanisms , 1995 .

[18]  H. Barlow Temporal and spatial summation in human vision at different background intensities , 1958, The Journal of physiology.

[19]  Karl R. Gegenfurtner,et al.  Temporal and chromatic properties of motion mechanisms , 1995, Vision Research.

[20]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[21]  R. Shapley,et al.  Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque , 1981, Nature.

[22]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[23]  Patrick Cavanagh,et al.  Color and luminance share a common motion pathway , 1985, Vision Research.

[24]  John H. R. Maunsell,et al.  Mixed parvocellular and magnocellular geniculate signals in visual area V4 , 1992, Nature.

[25]  V C Smith,et al.  Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[26]  D. Fender,et al.  The interaction of color and luminance in stereoscopic vision. , 1972, Investigative ophthalmology.

[27]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[28]  JH Maunsell,et al.  Does primate motion perception depend on the magnocellular pathway? , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  Eugene Switkes,et al.  Parallel processing of motion and colour information , 1987, Nature.

[30]  J H Maunsell,et al.  Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  J. Pokorny,et al.  Color perception profiles in central achromatopsia , 1993, Neurology.

[32]  V. S. RAMACHANDRAN,et al.  Does colour provide an input to human motion perception? , 1978, Nature.

[33]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  David C. Burr,et al.  Impulse-response functions for chromatic and achromatic stimuli , 1993 .

[35]  V. Casagrande A third parallel visual pathway to primate area V1 , 1994, Trends in Neurosciences.

[36]  V. Ramachandran,et al.  The perception of apparent motion. , 1986, Scientific American.

[37]  Jeremy M Wolfe,et al.  Is Accommodation Colorblind? Focusing Chromatic Contours , 1981, Perception.

[38]  O E Favreau,et al.  Perceived velocity of moving chromatic gratings. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[39]  Yasuhiro Kawabata,et al.  Temporal integration at equiluminance and chromatic adaptation , 1994, Vision Research.

[40]  S. Zeki,et al.  A century of cerebral achromatopsia. , 1990, Brain : a journal of neurology.

[41]  J. Movshon,et al.  Chromatic properties of neurons in macaque MT , 1994, Visual Neuroscience.

[42]  John H. R. Maunsell,et al.  Functional visual streams , 1992, Current Opinion in Neurobiology.

[43]  Barry B. Lee,et al.  Chapter 7 New views of primate retinal function , 1990 .

[44]  Yasuhiro Kawabata,et al.  R/G and Y/B opponent‐color mechanisms revealed in temporal integration for bichromatically mixed lights , 1990 .

[45]  Barry B. Lee On the Relation between Cellular Sensitivity and Psychophysical Detection , 1991 .

[46]  Karl R. Gegenfurtner,et al.  Contrast dependence of colour and luminance motion mechanisms in human vision , 1994, Nature.

[47]  R. Shapley,et al.  The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[48]  K. T. Mullen,et al.  Absence of smooth motion perception in color vision , 1992, Vision Research.

[49]  P Girard,et al.  Visual latencies in cytochrome oxidase bands of macaque area V2. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[50]  L M Vaina,et al.  Functional segregation of color and motion processing in the human visual cortex: clinical evidence. , 1994, Cerebral cortex.

[51]  W Singer,et al.  Simultaneous visual events show a long-range spatial interaction , 1981, Perception & psychophysics.

[52]  Andrei Gorea,et al.  Two carriers for motion perception: Color and luminance , 1991, Vision Research.

[53]  Delwin T. Lindsey,et al.  Motion at isoluminance: Discrimination/ detection ratios for moving isoluminant gratings , 1990, Vision Research.

[54]  T. Yoshioka,et al.  A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. , 1994, Science.

[55]  V. Casagrande,et al.  Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[56]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[57]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[58]  Thomas D. Albright,et al.  Color and the integration of motion signals , 1991, Trends in Neurosciences.

[59]  A. Damasio,et al.  Central achromatopsia , 1980, Neurology.

[60]  M. J. Morgan,et al.  Positional acuity with chromatic stimuli , 1985, Vision Research.

[61]  N. Logothetis,et al.  Perceptual deficits and the activity of the color-opponent and broad-band pathways at isoluminance. , 1990, Science.

[62]  A Gorea,et al.  Motion processing by chromatic and achromatic visual pathways. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[63]  M. Fahle,et al.  Why do isoluminant stimuli appear slower? , 1988, Journal of the Optical Society of America. A, Optics and image science.

[64]  Nikos K Logothetis,et al.  The color-opponent and broad-band channels of the primate visual system , 1990, Trends in Neurosciences.

[65]  K. Uchikawa,et al.  Temporal integration of chromatic double pulses for detection of equal-luminance wavelength changes. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[66]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[67]  J. Wilson Interaction of Simultaneous Visual Events , 1987, Perception.