Permanence in Kolmogorov-Type Systems of Nonautonomous Functional Differential Equations

Abstract In this paper we establish some general results on the permanence of the n -species Kolmogorov-type nonautonomous functional differential system[formula], i =1, 2,…,  n . These results are applied to the n -species Lotka–Volterra-type systems with distributed delays, that is, when f i ( t ,  x t ) are linear functions of x t . Our method consists of constructing n Liapunov-like functions, which can be regarded as boundary functions of some compact region inside the positive cone in R n .

[1]  Jack K. Hale,et al.  Persistence in infinite-dimensional systems , 1989 .

[2]  Paul Waltman,et al.  Persistence in dynamical systems , 1986 .

[3]  Josef Hofbauer,et al.  The theory of evolution and dynamical systems , 1988 .

[4]  Yulin Cao,et al.  Uniform persistence for population interaction models with time delay , 1993 .

[5]  H. I. Freedman Deterministic mathematical models in population ecology , 1982 .

[6]  J. Hale Theory of Functional Differential Equations , 1977 .

[7]  H. I. Freedman,et al.  Coexistence in a model of competition in the Chemostat incorporating discrete delays , 1989 .

[8]  T. A. Burton,et al.  Repellers in systems with infinite delay , 1989 .

[9]  Jim M Cushing,et al.  Integrodifferential Equations and Delay Models in Population Dynamics. , 1978 .

[10]  Yulin Cao,et al.  Uniform persistence for population models with time delay using multiple Lyapunov functions , 1993 .

[11]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[12]  V. Sree Hari Rao,et al.  Three-species food-chain models with mutual interference and time delays , 1986 .

[13]  M. Zhien,et al.  Harmless delays for uniform persistence , 1991 .

[14]  Paul Waltman,et al.  Uniformly persistent systems , 1986 .

[15]  Paul Waltman,et al.  A brief survey of persistence in dynamical systems , 1991 .

[16]  H. I. Freedman,et al.  Uniform Persistence in Functional Differential Equations , 1995 .

[17]  F. Zanolin Permanence and Positive Periodic Solutions for Kolmogorov Competing Species Systems , 1992 .

[18]  K. Schmitt,et al.  Permanence and the dynamics of biological systems. , 1992, Mathematical biosciences.

[19]  Klaus Schmitt,et al.  Persistence in models of predator-prey populations with diffusion , 1986 .

[20]  Yang Kuang,et al.  Uniform Persistence in Nonautonomous Delay Differential Kolmogorov-Type Population Models , 1993 .

[21]  T. Gard,et al.  Uniform persistence in multispecies population models , 1987 .