Metabolomic composition of normal aged and cataractous human lenses.

[1]  R. Sagdeev,et al.  Metabolomics of the rat lens: a combined LC-MS and NMR study. , 2014, Experimental eye research.

[2]  R. Truscott,et al.  Detection, quantification, and total synthesis of novel 3-hydroxykynurenine glucoside-derived metabolites present in human lenses. , 2014, Investigative ophthalmology & visual science.

[3]  R. Kaptein,et al.  Magnetic resonance imaging (MRI) study of the water content and transport in rat lenses. , 2013, Experimental eye research.

[4]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[5]  E. Vauthey,et al.  Photochemical properties of UV Filter molecules of the human eye. , 2011, Investigative ophthalmology & visual science.

[6]  A. Prescott,et al.  Homeostasis in the vertebrate lens: mechanisms of solute exchange , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  Antony J. Williams,et al.  ChemSpider:: An Online Chemical Information Resource , 2010 .

[8]  R. Truscott,et al.  Counterpoint: The lens fluid circulation model--a critical appraisal. , 2010, Investigative ophthalmology & visual science.

[9]  P. Donaldson,et al.  Point: A critical appraisal of the lens circulation model--an experimental paradigm for understanding the maintenance of lens transparency? , 2010, Investigative ophthalmology & visual science.

[10]  P. Donaldson,et al.  Dynamic regulation of GSH synthesis and uptake pathways in the rat lens epithelium. , 2010, Experimental eye research.

[11]  S. Morozov,et al.  Tryptophan and kynurenine levels in lenses of Wistar and accelerated-senescence OXYS rats , 2009, Molecular vision.

[12]  P. Santhoshkumar,et al.  Lens aging: effects of crystallins. , 2009, Biochimica et biophysica acta.

[13]  E. Vauthey,et al.  Ultrafast excited-state dynamics of kynurenine, a UV filter of the human eye. , 2009, The journal of physical chemistry. B.

[14]  V. R. Kanth,et al.  Elevated Expression of Indoleamine 2,3-Dioxygenase (IDO) and Accumulation of Kynurenic Acid in the Pathogenesis of STZ-Induced Diabetic Cataract in Wistar Rats , 2009, Current eye research.

[15]  R. Sagdeev,et al.  Photoactivity of kynurenine-derived UV filters. , 2008, Journal of photochemistry and photobiology. B, Biology.

[16]  S. Morozov,et al.  Deaminated UV filter 3-hydroxykynurenine O-beta-D-glucoside is found in cataractous human lenses. , 2008, Experimental eye research.

[17]  J. Aquilina,et al.  Protein-bound and free UV filters in cataract lenses. The concentration of UV filters is much lower than in normal lenses. , 2007, Experimental eye research.

[18]  S. Morozov,et al.  UV filter decomposition. A study of reactions of 4-(2-aminophenyl)-4-oxocrotonic acid with amino acids and antioxidants present in the human lens. , 2007, Experimental eye research.

[19]  R. Truscott,et al.  Novel human lens metabolites from normal and cataractous human lenses , 2007 .

[20]  O. Snytnikova,et al.  Kinetics and mechanism of reactions of photoexcited kynurenine with molecules of some natural compounds , 2007 .

[21]  M. Fris,et al.  Postnatal Biochemical Changes in Rat Lens: An Important Factor in Cataract Models , 2007, Current eye research.

[22]  S. Morozov,et al.  Photochemical and thermal reactivity of kynurenine. , 2006, Experimental eye research.

[23]  May-Britt Tessem,et al.  Biochemical changes in selenite cataract model measured by high-resolution MAS H NMR spectroscopy. , 2006, Acta ophthalmologica Scandinavica.

[24]  R. Truscott,et al.  Identification of the new UV filter compound cysteine‐l‐3‐hydroxykynurenine O‐β‐d‐glucoside in human lenses , 2006, FEBS letters.

[25]  D. Williams Oxidation, antioxidants and cataract formation: a literature review. , 2006, Veterinary ophthalmology.

[26]  P. Donaldson,et al.  Molecular identification and characterisation of the glycine transporter (GLYT1) and the glutamine/glutamate transporter (ASCT2) in the rat lens. , 2006, Experimental eye research.

[27]  R. Abagyan,et al.  METLIN: A Metabolite Mass Spectral Database , 2005, Therapeutic drug monitoring.

[28]  Stefan Löfgren,et al.  Time dependency of metabolic changes in rat lens after in vivo UVB irradiation analysed by HR-MAS 1H NMR spectroscopy. , 2005, Experimental eye research.

[29]  J. Steghens,et al.  Ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometric analysis of 76 underivatized amino acids of biological interest: a new tool for the diagnosis of inherited disorders of amino acid metabolism. , 2005, Rapid communications in mass spectrometry : RCM.

[30]  R. Truscott Age-related nuclear cataract-oxidation is the key. , 2005, Experimental eye research.

[31]  M. Forbes,et al.  Photochemistry of kynurenine, a tryptophan metabolite: properties of the triplet state. , 2005, The journal of physical chemistry. A.

[32]  R. Truscott,et al.  Lenticular levels of amino acids and free UV filters differ significantly between normals and cataract patients. , 2004, Investigative ophthalmology & visual science.

[33]  Christine Slingsby,et al.  Ageing and vision: structure, stability and function of lens crystallins. , 2004, Progress in biophysics and molecular biology.

[34]  P. Söderberg,et al.  Metabolic changes in rat lens after in vivo exposure to ultraviolet irradiation: measurements by high resolution MAS 1H NMR spectroscopy. , 2004, Investigative ophthalmology & visual science.

[35]  T. Annesley Ion suppression in mass spectrometry. , 2003, Clinical chemistry.

[36]  R. Truscott,et al.  UV filter instability: consequences for the human lens. , 2002, Experimental eye research.

[37]  R. Truscott,et al.  Glutathione and NADH, but not ascorbate, protect lens proteins from modification by UV filters. , 2002, Experimental eye research.

[38]  R. Truscott,et al.  Major changes in human ocular UV protection with age. , 2001, Investigative ophthalmology & visual science.

[39]  G. Vrensen,et al.  The Ageing Lens , 2000, Ophthalmologica.

[40]  J M Pope,et al.  Age-related changes in the kinetics of water transport in normal human lenses. , 1999, Experimental eye research.

[41]  F. Moroni,et al.  Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. , 1999, European journal of pharmacology.

[42]  R. Truscott,et al.  An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract. , 1998, Experimental eye research.

[43]  I. Birlouez-Aragon,et al.  Decrease in vitamin C concentration in human lenses during cataract progression. , 1998, International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.

[44]  A. Midelfart,et al.  Detection of different metabolites in the rabbit lens by high resolution 1H NMR spectroscopy. , 1996, Current eye research.

[45]  R. Brubaker,et al.  Ascorbic acid levels in the aqueous humor of nocturnal and diurnal mammals. , 1986, Archives of ophthalmology.

[46]  R. Truscott,et al.  The state of sulphydryl groups in normal and cataractous human lenses. , 1977, Experimental eye research.

[47]  R. Heyningen Experimental studies on cataract. , 1976 .

[48]  V. Reddy Transport of organic molecules in the lens. , 1973, Experimental eye research.

[49]  RUTH VAN HEYNINGEN,et al.  Fluorescent Glucoside in the Human Lens , 1971, Nature.

[50]  Kinsey Ve AMINO ACID TRANSPORT IN THE LENS. , 1965 .

[51]  H. Heath The distribution and possible functions of ascorbic acid in the eye , 1962 .