Preconditioned Krylov subspace methods for solving nonsymmetric matrices from CFD applications

Abstract We conduct an experimental study on the behavior of several preconditioned iterative methods to solve nonsymmetric matrices arising from computational fluid dynamics (CFD) applications. The preconditioned iterative methods consist of Krylov subspace accelerators and a powerful general purpose multilevel block ILU (BILUM) preconditioner. The BILUM preconditioner and an enhanced version of it are slightly modified versions of the originally proposed preconditioners. They will be used in combination with different Krylov subspace methods. We choose to test three popular transpose-free Krylov subspace methods: BiCGSTAB, GMRES and TFQMR. Numerical experiments, using several sets of test matrices arising from various relevant CFD applications, are reported.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  Jun Zhang,et al.  A grid-based multilevel incomplete LU factorization preconditioning technique for general sparse matrices , 2001, Appl. Math. Comput..

[3]  Y. Saad,et al.  Experimental study of ILU preconditioners for indefinite matrices , 1997 .

[4]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[5]  S. Succi,et al.  Iterative algorithms for the solution of nonsymmetric systems in the modelling of weak plasma turbulence , 1989 .

[6]  J. Zhangy,et al.  RILUM : A General Framework for Robust MultilevelRecursive Incomplete LU Preconditioning Techniques , 1999 .

[7]  Yousef Saad,et al.  High-order ILU preconditioners for CFD problems , 2000 .

[8]  N. Gould,et al.  Sparse Approximate-Inverse Preconditioners Using Norm-Minimization Techniques , 1998, SIAM J. Sci. Comput..

[9]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[10]  John N. Shadid,et al.  A Comparison of Preconditioned Nonsymmetric Krylov Methods on a Large-Scale MIMD Machine , 1994, SIAM J. Sci. Comput..

[11]  Gumersindo Verdú,et al.  Iterative schemes for the neutron diffusion equation , 2002 .

[12]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[13]  Gene H. Golub,et al.  Closer to the solutions: iterative linear solvers , 1997 .

[14]  Jun Zhang,et al.  BILUTM: A Domain-Based Multilevel Block ILUT Preconditioner for General Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[15]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[16]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[17]  Saad,et al.  A Multi-Level Preconditioner with Applicationsto the Numerical Simulation of Coating ProblemsYousef , 1998 .

[18]  Jun Zhang,et al.  Domain Decomposition and MultiLevel Type Techniques for General Sparse Linear Systems , 1997 .

[19]  Jun Zhang,et al.  BILUM: Block Versions of Multielimination and Multilevel ILU Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[20]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[21]  Edmond Chow,et al.  Approximate Inverse Techniques for Block-Partitioned Matrices , 1997, SIAM J. Sci. Comput..

[22]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[23]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[24]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[25]  I. Duff,et al.  The state of the art in numerical analysis , 1997 .

[26]  Jun Zhang,et al.  Diagonal threshold techniques in robust multi-level ILU preconditioners for general sparse linear systems , 1999, Numer. Linear Algebra Appl..

[27]  Jun Zhang,et al.  Enhanced multi-level block ILU preconditioning strategies for general sparse linear systems , 2001 .