Application of Global Sensitivity Indices for Measuring the Effectiveness of Quasi-Monte Carlo Methods
暂无分享,去创建一个
[1] Tobias J. Hagge,et al. Physics , 1929, Nature.
[2] W. Hoeffding. A Class of Statistics with Asymptotically Normal Distribution , 1948 .
[3] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[4] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[5] Harald Niederreiter,et al. Implementation and tests of low-discrepancy sequences , 1992, TOMC.
[6] Ilya M. Sobol,et al. Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .
[7] Russel E. Caflisch,et al. A quasi-Monte Carlo approach to particle simulation of the heat equation , 1993 .
[8] Russel E. Caflisch,et al. Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..
[9] I. Sobol,et al. About the use of rank transformation in sensitivity analysis of model output , 1995 .
[10] R. Caflisch,et al. Quasi-Monte Carlo integration , 1995 .
[11] B. Keister,et al. Multidimensional Quadrature Algorithms at Higher Degree and/or Dimension , 1996 .
[12] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[13] I. Sobol,et al. On quasi-Monte Carlo integrations , 1998 .
[14] Anargyros Papageorgiou,et al. Faster Evaluation of Multidimensional Integrals , 2000, ArXiv.
[15] I. Sobola,et al. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[16] A. Owen,et al. Quasi-Regression and the Relative Importance of the ANOVA Components of a Function , 2002 .
[17] A. Owen. THE DIMENSION DISTRIBUTION AND QUADRATURE TEST FUNCTIONS , 2003 .
[18] Frances Y. Kuo,et al. Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator , 2003, TOMS.
[19] Joseph A. C. Delaney. Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.