Combined supervised information with PCA via discriminative component selection
暂无分享,去创建一个
[1] M. Turk,et al. Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.
[2] Yuxiao Hu,et al. Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[3] I. Jolliffe. Principal Component Analysis , 2002 .
[4] Motoaki Kawanabe,et al. Clustering with the Fisher Score , 2002, NIPS.
[5] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[6] Andy Harter,et al. Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.
[7] Ahmed M. Elgammal,et al. Improving non-negative matrix factorization via ranking its bases , 2014, 2014 IEEE International Conference on Image Processing (ICIP).
[8] Deyu Meng,et al. Improve robustness of sparse PCA by L1-norm maximization , 2012, Pattern Recognit..
[9] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[10] Jiawei Han,et al. Generalized Fisher Score for Feature Selection , 2011, UAI.
[11] David J. Kriegman,et al. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.
[12] Terence Sim,et al. The CMU Pose, Illumination, and Expression (PIE) database , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.
[13] Songcan Chen,et al. Class-information-incorporated principal component analysis , 2005, Neurocomputing.
[14] Hamid Abrishami Moghaddam,et al. Block-wise 2D kernel PCA/LDA for face recognition , 2010, Inf. Process. Lett..
[15] Amnon Shashua,et al. Nonnegative Sparse PCA , 2006, NIPS.