Effect of film composition on the orientation of (Ba,Sr)TiO_3 grains in (Ba,Sr)_yTiO_2+ythin films

Thin films of composition (Ba,Sr)_ y TiO_2+ y with 0.43 ≤ y ≤; 1.64, were deposited by metalorganic chemical vapor deposition on (100) MgO substrates at various growth conditions. X-ray diffraction and transmission electron microscopy studies showed that the films were composed of epitaxial Ba_1– x Sr_ x TiO_3 ( x ≈0.06) grains and an amorphous phase. The orientation of the tetragonal Ba_1– x Sr_ x TiO_3 grains (pure a axis, pure c axis, or a mix of the two) was found to be strongly dependent upon film composition. This composition dependence is explained for the majority of the Ti-rich films by an analysis of average strains in the two-phase films, assuming a compressive strain of ≈1% in the amorphous phase.

[1]  N. Zakharov,et al.  NANO-phase SBT-family ferroelectric memories , 1998 .

[2]  D. Schlom,et al.  Adsorption-controlled growth of PbTiO3 by reactive molecular beam epitaxy , 1998 .

[3]  Masahiro Tanaka,et al.  Spin-coated ferroelectric SrBi2Nb2O9 thin films , 1998 .

[4]  S. Alpay,et al.  Thermodynamics of polydomain heterostructures. III. Domain stability map , 1998 .

[5]  James F. Scott,et al.  Device physics of ferroelectric memories , 1996 .

[6]  C. Hwang,et al.  Transmission electron microscopy observation of the interfacial reaction between a metal-organic chemical vapor deposition BaTiO_3 thin film and a (100) MgO substrate , 1995 .

[7]  Ryna B. Marinenko,et al.  Epitaxial growth of BaTiO3 thin films at 600 °C by metalorganic chemical vapor deposition , 1995 .

[8]  D. Clarke,et al.  Crystallographic orientation of epitaxial BaTiO3 films: The role of thermal‐expansion mismatch with the substrate , 1995 .

[9]  James S. Speck,et al.  DOMAIN CONFIGURATIONS DUE TO MULTIPLE MISFIT RELAXATION MECHANISMS IN EPITAXIAL FERROELECTRIC THIN FILMS. I: THEORY , 1994 .

[10]  Walker,et al.  Interface stability and the growth of optical quality perovskites on MgO. , 1994, Physical review letters.

[11]  L. D. Rotter,et al.  Growth and characterization of barium titanate thin films prepared by metalorganic chemical vapor deposition , 1994 .

[12]  W. Wong-Ng,et al.  Phase Equilibria and Crystal Chemistry of the Binary and Ternary Barium Polytitanates and Crystallography of the Barium Zinc Polytitanates , 1993 .

[13]  D. Fork,et al.  Epitaxial growth of MgO on GaAs(001) for growing epitaxial BaTiO3 thin films by pulsed laser deposition , 1992 .

[14]  B. Wessels,et al.  Epitaxial growth of BaTiO3 thin films by organometallic chemical vapor deposition , 1992 .

[15]  C. B. Carter,et al.  Epitaxy of barium titanate thin films grown on MgO by pulsed-laser ablation , 1991 .

[16]  H. Nakazawa,et al.  Metalorganic Chemical Vapor Deposition of BaTiO3 Films on MgO(100) , 1991 .

[17]  David E. Zelmon,et al.  Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon , 1991 .

[18]  K. Iijima,et al.  Preparation of ferroelectric BaTiO3 thin films by activated reactive evaporation , 1990 .

[19]  Y. Kobayashi,et al.  Growth of BaTiO3SrTiO3 thin films by r.f. magnetron sputtering , 1989 .

[20]  D. Skinner,et al.  Desirability Of Electro-Optic Materials For Guided-Wave Optics , 1987 .

[21]  S. Shirasaki Defect lead titanates with diverse curie temperatures , 1971 .

[22]  C. Johnson SOME DIELECTRIC AND ELECTRO‐OPTIC PROPERTIES OF BaTiO3 SINGLE CRYSTALS , 1965 .

[23]  M. McQuarrie Structural Behavior in the System (Ba, Ca, Sr) TiO3 and Its Relation to Certain Dielectric Characteristics , 1955 .

[24]  H. F. Kay,et al.  XCV. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties , 1949 .

[25]  R. Doremus,et al.  Handbook of glass properties , 1986 .

[26]  A. D. Romig,et al.  Microbeam Analysis 1984 , 1984 .

[27]  Y. S. Touloukian Thermal Expansion: Nonmetallic Solids , 1977 .

[28]  Howard F. McMurdie,et al.  Phase diagrams for ceramists , 1964 .