Fingerprint matching using local alignment based on multiple pairs of reference minutiae

A novel minutiae-based method is proposed to match deformed fingerprints. We combine minutiae structures and descriptors to obtain multiple pairs of reference minutiae and globally align two sets of minutiae to get a common overlapping region based on these pairs of reference minutiae. At the matching stage, our proposed approach aligns local areas in two fingerprints with new reference minutiae pairs that are selected from matched minutiae pairs. After registration of the fingerprints according to the local correspondence, the number of matched minutiae can be counted using tight thresholds. Experimental results confirm that the proposed algorithm is effective for fingerprint matching with nonlinear distortions.

[1]  Arun Ross,et al.  A deformable model for fingerprint matching , 2005, Pattern Recognit..

[2]  En Zhu,et al.  Fingerprint matching based on global alignment of multiple reference minutiae , 2005, Pattern Recognit..

[3]  A. Kai Qin,et al.  Evolutionary extreme learning machine , 2005, Pattern Recognit..

[4]  Laurent D. Cohen,et al.  Fingerprint image matching by minimization of a thin-plate energy using a two-step algorithm with auxiliary variables , 2000, Proceedings Fifth IEEE Workshop on Applications of Computer Vision.

[5]  Xudong Jiang,et al.  Fingerprint minutiae matching based on the local and global structures , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[6]  Justas Kranauskas,et al.  Fingerprint Minutiae Matching without Global Alignment Using Local Structures , 2022 .

[7]  Hong Chen,et al.  Fingerprint matching based on global comprehensive similarity , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Anil K. Jain,et al.  Fingerprint Image Enhancement: Algorithm and Performance Evaluation , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Xudong Jiang,et al.  Fingerprint Reference-Point Detection , 2005, EURASIP J. Adv. Signal Process..

[10]  Anil K. Jain,et al.  On-line fingerprint verification , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[11]  George Bebis,et al.  Fingerprint identification using Delaunay triangulation , 1999, Proceedings 1999 International Conference on Information Intelligence and Systems (Cat. No.PR00446).

[12]  Zsolt Miklós Kovács-Vajna,et al.  A Fingerprint Verification System Based on Triangular Matching and Dynamic Time Warping , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Sabih H. Gerez,et al.  Fingerprint matching by thin-plate spline modelling of elastic deformations , 2003, Pattern Recognit..

[14]  Jie Tian,et al.  A minutiae matching algorithm in fingerprint verification , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[15]  Nalini K. Ratha,et al.  Robust fingerprint authentication using local structural similarity , 2000, Proceedings Fifth IEEE Workshop on Applications of Computer Vision.

[16]  Pauli Kuosmanen,et al.  Fingerprint Matching Using an Orientation-Based Minutia Descriptor , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Daming Shi,et al.  Fingerprint minutiae matching using the adjacent feature vector , 2005, Pattern Recognit. Lett..

[18]  Jianjiang Feng,et al.  Combining minutiae descriptors for fingerprint matching , 2008, Pattern Recognit..

[19]  Raymond Thai,et al.  Fingerprint Image Enhancement and Minutiae Extraction , 2003 .

[20]  Dongjae Lee,et al.  A robust fingerprint matching algorithm using local alignment , 2002, Object recognition supported by user interaction for service robots.

[21]  Xinjian Chen,et al.  An algorithm for distorted fingerprint matching based on local triangle feature set , 2006, IEEE Transactions on Information Forensics and Security.

[22]  Tetsuo Asano,et al.  A Robust Fingerprint Indexing Scheme Using Minutia Neighborhood Structure and Low-Order Delaunay Triangles , 2007, IEEE Transactions on Information Forensics and Security.