Three microtubule severing enzymes contribute to the “Pacman-flux” machinery that moves chromosomes

Chromosomes move toward mitotic spindle poles by a Pacman-flux mechanism linked to microtubule depolymerization: chromosomes actively depolymerize attached microtubule plus ends (Pacman) while being reeled in to spindle poles by the continual poleward flow of tubulin subunits driven by minus-end depolymerization (flux). We report that Pacman-flux in Drosophila melanogaster incorporates the activities of three different microtubule severing enzymes, Spastin, Fidgetin, and Katanin. Spastin and Fidgetin are utilized to stimulate microtubule minus-end depolymerization and flux. Both proteins concentrate at centrosomes, where they catalyze the turnover of γ-tubulin, consistent with the hypothesis that they exert their influence by releasing stabilizing γ-tubulin ring complexes from minus ends. In contrast, Katanin appears to function primarily on anaphase chromosomes, where it stimulates microtubule plus-end depolymerization and Pacman-based chromatid motility. Collectively, these findings reveal novel and significant roles for microtubule severing within the spindle and broaden our understanding of the molecular machinery used to move chromosomes.

[1]  Y. Hotta,et al.  Cell Division , 2021, Nature.

[2]  K. Oegema,et al.  Katanin controls mitotic and meiotic spindle length , 2006, The Journal of cell biology.

[3]  A. Hyman,et al.  Katanin Disrupts the Microtubule Lattice and Increases Polymer Number in C. elegans Meiosis , 2006, Current Biology.

[4]  C. Mahaffey,et al.  Interaction between Fidgetin and Protein Kinase A-anchoring Protein AKAP95 Is Critical for Palatogenesis in the Mouse* , 2006, Journal of Biological Chemistry.

[5]  A. Mogilner,et al.  Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. , 2006, Biophysical journal.

[6]  D. Glover,et al.  Antagonistic activities of Klp10A and Orbit regulate spindle length, bipolarity and function in vivo , 2006, Journal of Cell Science.

[7]  L. Qiang,et al.  Tau Protects Microtubules in the Axon from Severing by Katanin , 2006, The Journal of Neuroscience.

[8]  Ronald D. Vale,et al.  Making Microtubules and Mitotic Spindles in Cells without Functional Centrosomes , 2006, Current Biology.

[9]  R. Wollman,et al.  Length Control of the Metaphase Spindle , 2005, Current Biology.

[10]  R. Vale,et al.  Distinct mechanisms govern the localisation of Drosophila CLIP-190 to unattached kinetochores and microtubule plus-ends , 2005, Journal of Cell Science.

[11]  Ronald D Vale,et al.  Cell cycle-dependent dynamics and regulation of mitotic kinesins in Drosophila S2 cells. , 2005, Molecular biology of the cell.

[12]  J. Scholey,et al.  Spindle pole organization in Drosophila S2 cells by dynein, abnormal spindle protein (Asp), and KLP10A. , 2005, Molecular biology of the cell.

[13]  M. Pericak-Vance,et al.  Subcellular localization of spastin: implications for the pathogenesis of hereditary spastic paraplegia , 2005, Neurogenetics.

[14]  R. Vale,et al.  The Drosophila Homologue of the Hereditary Spastic Paraplegia Protein, Spastin, Severs and Disassembles Microtubules , 2005, Current Biology.

[15]  C. Mahaffey,et al.  Functional characterization of fidgetin, an AAA-family protein mutated in fidget mice. , 2005, Experimental cell research.

[16]  G. Gundersen,et al.  Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing , 2005, The Journal of cell biology.

[17]  N. Rusan,et al.  Centrosome fragments and microtubules are transported asymmetrically away from division plane in anaphase , 2005, The Journal of cell biology.

[18]  Alexey Khodjakov,et al.  Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis , 2004, The Journal of cell biology.

[19]  K. Zinn,et al.  Drosophila Spastin Regulates Synaptic Microtubule Networks and Is Required for Normal Motor Function , 2004, PLoS biology.

[20]  E. Rugarli,et al.  Spastin interacts with the centrosomal protein NA14, and is enriched in the spindle pole, the midbody and the distal axon. , 2004, Human molecular genetics.

[21]  Andrei N Lupas,et al.  Phylogenetic analysis of AAA proteins. , 2004, Journal of structural biology.

[22]  I. Vernos,et al.  A Kinesin-like Motor Inhibits Microtubule Dynamic Instability , 2004, Science.

[23]  G. C. Rogers,et al.  Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase , 2004, Nature.

[24]  G. C. Rogers,et al.  The chromokinesin, KLP3A, dives mitotic spindle pole separation during prometaphase and anaphase and facilitates chromatid motility. , 2003, Molecular biology of the cell.

[25]  C. Walczak Faculty Opinions recommendation of Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics. , 2003 .

[26]  J. Burgunder,et al.  Identification of the Drosophila melanogaster homolog of the human spastin gene , 2003, Development Genes and Evolution.

[27]  F. McNally,et al.  Katanin-mediated microtubule severing can be regulated by multiple mechanisms. , 2002, Cell motility and the cytoskeleton.

[28]  K. Oegema,et al.  Poleward Microtubule Flux Is a Major Component of Spindle Dynamics and Anaphase A in Mitotic Drosophila Embryos , 2002, Current Biology.

[29]  G. C. Rogers,et al.  Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle , 2002, The Journal of cell biology.

[30]  F. McNally,et al.  Katanin inhibition prevents the redistribution of γ-tubulin at mitosis , 2002 .

[31]  Richard D Emes,et al.  A new sequence motif linking lissencephaly, Treacher Collins and oral-facial-digital type 1 syndromes, microtubule dynamics and cell migration. , 2001, Human molecular genetics.

[32]  S. Bonaccorsi,et al.  The Drosophila Protein Asp Is Involved in Microtubule Organization during Spindle Formation and Cytokinesis , 2001, The Journal of cell biology.

[33]  C. Mahaffey,et al.  The mouse fidgetin gene defines a new role for AAA family proteins in mammalian development , 2000, Nature Genetics.

[34]  Yixian Zheng,et al.  A new function for the γ -tubulin ring complex as a microtubule minus-end cap , 2000, Nature Cell Biology.

[35]  F. McNally,et al.  MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. , 2000, Genes & development.

[36]  F. McNally,et al.  Two domains of p80 katanin regulate microtubule severing and spindle pole targeting by p60 katanin. , 2000, Journal of cell science.

[37]  Alexey Khodjakov,et al.  Centrosome-independent mitotic spindle formation in vertebrates , 2000, Current Biology.

[38]  Bertrand Fontaine,et al.  Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia , 1999, Nature Genetics.

[39]  C. Rieder,et al.  The Sudden Recruitment of γ-Tubulin to the Centrosome at the Onset of Mitosis and Its Dynamic Exchange Throughout the Cell Cycle, Do Not Require Microtubules , 1999, The Journal of cell biology.

[40]  D. Glover,et al.  Abnormal spindle protein, Asp, and the integrity of mitotic centrosomal microtubule organizing centers. , 1999, Science.

[41]  A. Desai,et al.  Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells , 1998, Current Biology.

[42]  F. McNally,et al.  Katanin is responsible for the M-phase microtubule-severing activity in Xenopus eggs. , 1998, Molecular biology of the cell.

[43]  J. D. De Mey,et al.  Evidence for a Role of CLIP-170 in the Establishment of Metaphase Chromosome Alignment , 1998, The Journal of cell biology.

[44]  R. Vale,et al.  Katanin, a Microtubule-Severing Protein, Is a Novel AAA ATPase that Targets to the Centrosome Using a WD40-Containing Subunit , 1998, Cell.

[45]  Eric Karsenti,et al.  Spindle Assembly in Xenopus Egg Extracts: Respective Roles of Centrosomes and Microtubule Self-Organization , 1997, The Journal of cell biology.

[46]  M. Hoyt,et al.  Mitotic spindle function in Saccharomyces cerevisiae requires a balance between different types of kinesin-related motors. , 1997, Molecular biology of the cell.

[47]  T. J. Keating,et al.  Microtubule release from the centrosome. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[48]  R. Vale,et al.  Katanin, the microtubule-severing ATPase, is concentrated at centrosomes. , 1996, Journal of cell science.

[49]  G. Borisy,et al.  Kinetochore microtubule dynamics and the metaphase-anaphase transition , 1995, The Journal of cell biology.

[50]  T. Mitchison,et al.  Microtubule flux in mitosis is independent of chromosomes, centrosomes, and antiparallel microtubules. , 1994, Molecular biology of the cell.

[51]  D. Mastronarde,et al.  Interpolar spindle microtubules in PTK cells , 1993, The Journal of cell biology.

[52]  R. Vale,et al.  Identification of katanin, an ATPase that severs and disassembles stable microtubules , 1993, Cell.

[53]  T. Mitchison,et al.  Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis , 1992, The Journal of cell biology.

[54]  R. Vale Severing of stable microtubules by a mitotically activated protein in xenopus egg extracts , 1991, Cell.

[55]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[56]  H. Maiato,et al.  Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres , 2005, Nature Cell Biology.

[57]  J. Scholey,et al.  Cell division , 2003, Nature.

[58]  F. McNally,et al.  Katanin inhibition prevents the redistribution of gamma-tubulin at mitosis. , 2002, Journal of cell science.

[59]  T. Mitchison,et al.  Mitosis: a history of division , 2001, Nature Cell Biology.

[60]  Y. Zheng,et al.  A new function for the gamma-tubulin ring complex as a microtubule minus-end cap. , 2000, Nature cell biology.

[61]  S. Bonaccorsi,et al.  Spindle assembly in Drosophila neuroblasts and ganglion mother cells , 1999, Nature Cell Biology.

[62]  F. Klippel Where is the mouse , 1990 .