Random generation of k-interactive capacities

Abstract The theory of capacities provides powerful formal methodology to account for criteria dependencies in multiple criteria decision problems. The discrete Choquet and Sugeno integrals aggregate criteria valuations accounting for criteria synergies and redundancies. We address an important problem of randomly generating capacities of special classes for simulation studies and for capacity learning through evolutionary algorithms. We discuss two efficient methods suitable for k-interactive capacities. The results are supported by the extensive numerical evidence and provide a useful tool for large scale simulations.

[1]  Jean-Luc Marichal,et al.  Entropy of discrete Choquet capacities , 2002, Eur. J. Oper. Res..

[2]  Michel Grabisch,et al.  Set Functions, Games and Capacities in Decision Making , 2016 .

[3]  Gleb Beliakov,et al.  Nonadditivity index and capacity identification method in the context of multicriteria decision making , 2018, Inf. Sci..

[4]  Wolfgang Hörmann,et al.  Automatic Nonuniform Random Variate Generation , 2011 .

[5]  Humberto Bustince,et al.  A Practical Guide to Averaging Functions , 2015, Studies in Fuzziness and Soft Computing.

[6]  Thomas R. Willemain,et al.  An empirical study of tests for uniformity in multidimensional data , 2013, Comput. Stat. Data Anal..

[7]  Bernard De Baets,et al.  Exploiting the Lattice of Ideals Representation of a Poset , 2006, Fundam. Informaticae.

[8]  Bernard De Baets,et al.  On the cycle-transitivity of the mutual rank probability relation of a poset , 2010, Fuzzy Sets Syst..

[9]  Gleb Beliakov,et al.  K-minitive Capacities and K-minitive Aggregation Functions , 2019, J. Intell. Fuzzy Syst..

[10]  Michel Grabisch,et al.  p-Symmetric Fuzzy Measures , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[11]  E. Pap Null-Additive Set Functions , 1995 .

[12]  Irene Díaz,et al.  On random generation of fuzzy measures , 2013, Fuzzy Sets Syst..

[13]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[14]  Irene Díaz,et al.  Minimals Plus: An improved algorithm for the random generation of linear extensions of partially ordered sets , 2019, Inf. Sci..

[15]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[16]  Gleb Beliakov,et al.  Discrete Fuzzy Measures - Computational Aspects , 2019, Studies in Fuzziness and Soft Computing.

[17]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..

[18]  Jean-Luc Marichal,et al.  k-intolerant capacities and Choquet integrals , 2007, Eur. J. Oper. Res..

[19]  Robert L. Smith,et al.  Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..

[20]  Paul G. Spirakis,et al.  Weighted random sampling with a reservoir , 2006, Inf. Process. Lett..

[21]  A. B. Kahn,et al.  Topological sorting of large networks , 1962, CACM.

[22]  Pedro Miranda,et al.  Combinatorial Structure of the Polytope of 2-Additive Measures , 2020, IEEE Transactions on Fuzzy Systems.

[23]  Jean-Luc Marichal,et al.  Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral , 2004, Eur. J. Oper. Res..

[24]  Gleb Beliakov,et al.  Nonmodularity index for capacity identifying with multiple criteria preference information , 2019, Inf. Sci..

[25]  P. Rubin Generating random points in a polytope , 1984 .

[26]  B. De Baets,et al.  On the random generation and counting of weak order extensions of a poset with given class cardinalities , 2007, Inf. Sci..

[27]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[28]  Elías F. Combarro,et al.  Identification of fuzzy measures from sample data with genetic algorithms , 2006, Comput. Oper. Res..

[29]  Gleb Beliakov,et al.  Learning fuzzy measures from data: Simplifications and optimisation strategies , 2019, Inf. Sci..

[30]  Michel Grabisch,et al.  A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package , 2008, Eur. J. Oper. Res..

[31]  G. Choquet Theory of capacities , 1954 .

[32]  Radko Mesiar,et al.  K-maxitive Aggregation Functions , 2018, Fuzzy Sets Syst..

[33]  Richard P. Stanley,et al.  Two poset polytopes , 1986, Discret. Comput. Geom..

[34]  Gleb Beliakov On Random Generation of Supermodular Capacities , 2022, IEEE Transactions on Fuzzy Systems.

[35]  Bernard De Baets,et al.  On the random generation of monotone data sets , 2008, Inf. Process. Lett..