Polynomial optimization for the solution of fuel-optimal impulsive rendezvous using primer vector theory
暂无分享,去创建一个
Denis Arzelier | Mounir Kara-Zaitri | Christophe Louembet | Akin Delibasi | D. Arzelier | C. Louembet | M. Kara-Zaitri | A. Delibasi
[1] Pablo A. Parrilo,et al. Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..
[2] J. Lasserre,et al. Solving nonconvex optimization problems , 2004, IEEE Control Systems.
[3] J. E. Prussing,et al. Illustration of the primer vector in time- fixed, orbit transfer. , 1969 .
[4] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[5] W. H. Clohessy,et al. Terminal Guidance System for Satellite Rendezvous , 2012 .
[6] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[7] K. Yamanaka,et al. New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit , 2002 .
[8] Thomas Carter,et al. Optimal impulsive space trajectories based on linear equations , 1991 .
[9] Derek F Lawden,et al. Optimal trajectories for space navigation , 1964 .
[10] Johan Löfberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .
[11] John E. Prussing,et al. Optimal multiple-impulse orbital rendezvous , 1967 .
[12] Ulf T. Jönsson,et al. Fuel efficient relative orbit control strategies for formation flying and rendezvous within PRISMA , 2006 .
[13] Jean-Claude Berges,et al. CNES Approaching Guidance Experiment within FFIORD , 2007 .
[14] J. Tschauner. The elliptic orbit rendezvous , 1966 .
[15] Thomas Carter,et al. Necessary and Sufficient Conditions for Optimal Impulsive Rendezvous with Linear Equations of Motion , 2000 .
[16] L. Neustadt. A general theory of minimum-fuel space trajectories : technical report , 1964 .