Polynomial optimization for the solution of fuel-optimal impulsive rendezvous using primer vector theory

In this paper, the optimal fuel impulsive time-fixed rendezvous problem is considered. Under some simplifying assumptions, this problem may be recast as a non convex polynomial optimization problem. A numerical solving algorithm using a convex relaxation based on sum-of-squares representation of positive polynomials is proposed. Numerical results are evaluated on the PRISMA technology in-orbit formation flying testbed mission.

[1]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[2]  J. Lasserre,et al.  Solving nonconvex optimization problems , 2004, IEEE Control Systems.

[3]  J. E. Prussing,et al.  Illustration of the primer vector in time- fixed, orbit transfer. , 1969 .

[4]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[5]  W. H. Clohessy,et al.  Terminal Guidance System for Satellite Rendezvous , 2012 .

[6]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[7]  K. Yamanaka,et al.  New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit , 2002 .

[8]  Thomas Carter,et al.  Optimal impulsive space trajectories based on linear equations , 1991 .

[9]  Derek F Lawden,et al.  Optimal trajectories for space navigation , 1964 .

[10]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[11]  John E. Prussing,et al.  Optimal multiple-impulse orbital rendezvous , 1967 .

[12]  Ulf T. Jönsson,et al.  Fuel efficient relative orbit control strategies for formation flying and rendezvous within PRISMA , 2006 .

[13]  Jean-Claude Berges,et al.  CNES Approaching Guidance Experiment within FFIORD , 2007 .

[14]  J. Tschauner The elliptic orbit rendezvous , 1966 .

[15]  Thomas Carter,et al.  Necessary and Sufficient Conditions for Optimal Impulsive Rendezvous with Linear Equations of Motion , 2000 .

[16]  L. Neustadt A general theory of minimum-fuel space trajectories : technical report , 1964 .