Two Fundamental Challenges in Perceptual Picture Coding and Image Restoration

This paper examines two fundamental challenges in two areas, respectively, which have been intensively researched in the field of image processing and communications, i.e., digital picture coding/compression and digital picture (including both video and still images) restoration (or de-noising). It reflects on historical developments and reviews the state-of-the-art in the area of digital picture coding. Quantitative perceptual distortion measure based on the human visual system is identified as the weakest link in the current picture coding framework and remains a fundamental challenge in devising the next generation picture coding systems. In the area of picture restoration, the paper takes a special interest in surveillance and security video/image de-noising task for forensic investigations. Highlighting the most recent advances and the inadequacies in existing image de-noising techniques, it focuses on a fundamental challenge in designing a unified picture de-noising framework, including noise modeling, for removal of analogue and digital surveillance video distortions.

[1]  H. Wu,et al.  Adaptive impulse detection using center-weighted median filters , 2001, IEEE Signal Processing Letters.

[2]  Wen-Hsiung Chen,et al.  A Fast Computational Algorithm for the Discrete Cosine Transform , 1977, IEEE Trans. Commun..

[3]  K. Martin,et al.  Vector filtering for color imaging , 2005, IEEE Signal Processing Magazine.

[4]  A. J. Seyler The coding of visual signals to reduce channel-capacity requirements , 1962 .

[5]  Tao Chen,et al.  Application of partition-based median type filters for suppressing noise in images , 2001, IEEE Trans. Image Process..

[6]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2002, The Kluwer International Series in Engineering and Computer Science.

[7]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[8]  Kenneth E. Barner,et al.  Fuzzy ranking: theory and applications , 2000, Signal Process..

[9]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .

[10]  PETER SANTAGO,et al.  Using Convex Set Techniques for Combined Pixel and Frequency Domain Coding of Time-Varying Images , 1987, IEEE J. Sel. Areas Commun..

[11]  Tamer F. Rabie,et al.  Robust estimation approach for blind denoising , 2005, IEEE Transactions on Image Processing.

[12]  H. Wu,et al.  Space variant median filters for the restoration of impulse noise corrupted images , 2001 .

[13]  Jerry D. Gibson,et al.  Digital coding of waveforms: Principles and applications to speech and video , 1985, Proceedings of the IEEE.

[14]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[15]  Tao Chen,et al.  Adaptive postfiltering of transform coefficients for the reduction of blocking artifacts , 2001, IEEE Trans. Circuits Syst. Video Technol..

[16]  Rastislav Lukac,et al.  cDNA microarray image processing using fuzzy vector filtering framework , 2005, Fuzzy Sets Syst..

[17]  K. R. Rao,et al.  Techniques and Standards for Image, Video, and Audio Coding , 1996 .

[18]  Bernd Girod,et al.  Techniques for Improved Rate-Distortion Optimized Video Streaming , 2004 .

[19]  Ju Jia Zou,et al.  A deblocking method for BDCT compressed images based on adaptive projections , 2005, IEEE Transactions on Circuits and Systems for Video Technology.

[20]  Hong Ren Wu,et al.  Perceptually lossless medical image coding , 2006, IEEE Transactions on Medical Imaging.

[21]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[22]  Arun N. Netravali,et al.  Digital Pictures: Representation, Compression and Standards , 1995 .

[23]  Bernd Girod,et al.  What's wrong with mean-squared error? , 1993 .

[24]  W. M. Goodall Television by pulse code modulation , 1951 .

[25]  Michael L. Lightstone,et al.  A new efficient approach for the removal of impulse noise from highly corrupted images , 1996, IEEE Trans. Image Process..

[26]  Richard Clark Pasco,et al.  Source coding algorithms for fast data compression , 1976 .

[27]  Hong Ren Wu Digital processing and enhancement of surveillance video , 2003 .

[28]  David Dagan Feng,et al.  Partition-based vector filtering technique for suppression of noise in digital color images , 2006, IEEE Transactions on Image Processing.

[29]  J. Astola,et al.  Fundamentals of Nonlinear Digital Filtering , 1997 .

[30]  Hong Ren Wu,et al.  A robust structure-adaptive hybrid vector filter for color image restoration , 2005, IEEE Transactions on Image Processing.

[31]  Hong Ren Wu,et al.  Perceptual coding of digital monochrome images , 2004, IEEE Signal Processing Letters.

[32]  N. Kingsbury Image processing with complex wavelets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[34]  Zhen Liu,et al.  JPEG2000 encoding with perceptual distortion control , 2006, IEEE Transactions on Image Processing.

[35]  A. Venetsanopoulos,et al.  Order statistics in digital image processing , 1992, Proc. IEEE.

[36]  Andrew F. Inglis,et al.  Video Engineering , 1992 .

[37]  Kai-Kuang Ma,et al.  Noise adaptive soft-switching median filter , 2001, IEEE Trans. Image Process..

[38]  Minh N. Do,et al.  The finite ridgelet transform for image representation , 2003, IEEE Trans. Image Process..

[39]  Anil K. Jain,et al.  Displacement Measurement and Its Application in Interframe Image Coding , 1981, IEEE Trans. Commun..

[40]  Thomas Wiegand,et al.  Affine Multi-Frame Motion-Compensated Prediction , 2001 .

[41]  Ashraf A. Kassim,et al.  Digital Video Image Quality and Perceptual Coding , 2005, J. Electronic Imaging.

[42]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[43]  M. Emin Yüksel,et al.  A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise , 2006, IEEE Trans. Image Process..

[44]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[45]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[46]  G. Battle A block spin construction of ondelettes Part II: The QFT connection , 1988 .

[47]  David Dagan Feng,et al.  Fuzzy vector partition filtering technique for color image restoration , 2007, Comput. Vis. Image Underst..

[48]  Michael Yuen,et al.  A survey of hybrid MC/DPCM/DCT video coding distortions , 1998, Signal Process..

[49]  Wan-Chi Siu,et al.  A deblocking technique for block-transform compressed image using wavelet transform modulus maxima , 1998, IEEE Trans. Image Process..

[50]  Zigmantas L. Budrikis,et al.  Detail perception after scene changes in television image presentations , 1965, IEEE Trans. Inf. Theory.

[51]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[52]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[53]  Etienne E. Kerre,et al.  Fuzzy Two-Step Filter for Impulse Noise Reduction From Color Images , 2006, IEEE Transactions on Image Processing.

[54]  Y. Meyer Wavelets and Operators , 1993 .

[55]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[56]  Hong Ren Wu,et al.  Artifact reduction by post-processing in image compression , 2006 .

[57]  Jorma Rissanen,et al.  Generalized Kraft Inequality and Arithmetic Coding , 1976, IBM J. Res. Dev..

[58]  Feng Wu,et al.  Adaptive Directional Lifting-Based Wavelet Transform for Image Coding , 2007, IEEE Transactions on Image Processing.

[59]  Zhihong Man,et al.  A New Adaptive Backpropagation Algorithm Based on Lyapunov Stability Theory for Neural Networks , 2006, IEEE Transactions on Neural Networks.

[60]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  David S. Taubman,et al.  High performance scalable image compression with EBCOT , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[62]  Hong Ren Wu,et al.  Prediction-based image restoration using a multiple window configuration , 2002 .

[63]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..