Simultaneous Effects of Soil-structure and Masonry Infill-Structure Interactions on Seismic Performance of Steel Frames

In this paper, the effects of dynamic Soil-Structure Interaction (SSI) on seismic performance of steel frames with infill wall were investigated. This study assesses these buildings seismic performance utilizing the static analysis of nonlinear simulated models to obtain the structures response. The investigation was based on structures with design and detailing characteristics representative of 2800 Iranian code. To consider the dynamic soil-structure interaction effect, soil can be modeled with a set of springs and dashpots. The results show soil-structure interaction and presence of infill wall in building can be able to change the seismic performance of frame structures. Dynamic soil-structure interaction increases system flexibility. Increasing the number of column spans in all cases of loading, increases the amount of the base shear and story drift. The analysis results, also, show that reducing the shear wave velocity in soil beneath the structure, causes soil-structure interaction effects on nonlinear structural response become significant.