Monte Carlo Estimation of Morphological Granulometric Discrete Size Distributions

Morphological granulometries are frequently used as descriptors of granularity, or texture, within a binary image. In this paper, we study the problem of estimating the (discrete) size distribution and size density of a random binary image by means of empirical, as well as, Monte Carlo estimators. Theoretical and experimental results demonstrate superiority of the Monte Carlo estimation approach, and suitability of mathematical morphology in studying important properties of a particular binary random image model, widely known as a Markov random field model.

[1]  Robert M. Haralick,et al.  Estimation of optimal morphological τ-opening parameters based on independent observation of signal and noise pattern spectra , 1992, Signal Process..

[2]  Jeff B. Pelz,et al.  Morphological granulometric analysis of electrophotographic images--size distribution statistics for process control , 1991 .

[3]  G. Matheron Random Sets and Integral Geometry , 1976 .

[4]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[5]  J. Besag,et al.  Spatial Statistics and Bayesian Computation , 1993 .

[6]  Marc Moore,et al.  Statistiques Morphologiques pour l'Ajustement d'Images , 1993 .

[7]  Jeff B. Pelz,et al.  Morphological image segmentation by local granulometric size distributions , 1992, J. Electronic Imaging.

[8]  Robert M. Haralick Model-based morphology: simple and complex shapes , 1992 .

[9]  J. Goutsias,et al.  Optimal Morphological Pattern Restoration from Noisy Binary Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Edward R. Dougherty,et al.  Asymptotic normality of the morphological pattern-spectrum moments and orthogonal granulometric generators , 1992, J. Vis. Commun. Image Represent..

[11]  M. Moore,et al.  On the asymptotic behavior of some statistics based on morphological operations , 1991 .

[12]  Petros Maragos,et al.  Pattern Spectrum and Multiscale Shape Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Jeff B. Pelz,et al.  Morphological texture-based maximum-likelihood pixel classification based on local granulometric moments , 1992, Pattern Recognit..

[14]  K. Wilson Problems in Physics with many Scales of Length , 1979 .