Macroscopic laws, microscopic dynamics, time's arrow and Boltzmann's entropy

I discuss Boltzmann's resolution of the apparent paradox: microscopic dynamics are time-symmetric but the behavior of macroscopic objects, composed of microscopic constituents, is time-asymmetric. Noting the great disparity between macroscales and microscales Boltzmann developed a statistical approach which explains the observed macroscopic behavior. In particular it predicts the increase with time of the “Boltzmann entropy”, SB(X), for “almost all” microscopic states X, of a nonequilibrium macroscopic system. The quantitative description of the macroscopic evolution, and ipso facto the compatibility between the macroscopic descriptions and microscopic descriptions, is illustrated by an example: the rigorous derivation of a diffusion equation for the typical macroscopic density profile of a Lorentz gas of independent electrons moving according to Hamiltonian dynamics. The role of low entropy “initial states” is emphasized.

[1]  Charles H. Bennett Demons, Engines and the Second Law , 1987 .

[2]  Rolf Landauer,et al.  Statistical physics of machinery: forgotten middle-ground , 1993 .

[3]  J. Lebowitz,et al.  Steady state self-diffusion at low density , 1982 .

[4]  Hartle Spacetime coarse grainings in nonrelativistic quantum mechanics. , 1991, Physical review. D, Particles and fields.

[5]  B. Meier,et al.  Polarization echoes in NMR. , 1992, Physical review letters.

[6]  N. Chernov Statistical properties of the periodic Lorentz gas. Multidimensional case , 1994 .

[7]  Erwin Schrödinger,et al.  What is life ? and other scientific essays , 1965 .

[8]  D. Ruelle Chance and Chaos , 2020 .

[9]  L. Bunimovich,et al.  Markov partitions for two-dimensional hyperbolic billiards , 1990 .

[10]  A. Martin-Löf Statistical mechanics and the foundations of thermodynamics , 1979 .

[11]  W. RichardsonO. Problems of Physics , 1921 .

[12]  R. Feynman The Character of Physical Law , 1965 .

[13]  O. Lanford The hard sphere gas in the Boltzmann-Grad limit , 1981 .

[14]  Anthony J Leggett,et al.  The Problems of Physics , 1987 .

[15]  N. Kampen,et al.  Quantum statistics of irreversible processes , 1954 .

[16]  T. Funaki,et al.  Stationary states of random Hamiltonian systems , 1994 .

[17]  Freeman J. Dyson,et al.  Energy in the universe , 1971 .

[18]  Nikolai SergeevichHG Krylov,et al.  Works on the foundations of statistical physics , 1979 .

[19]  Leonid A. Bunimovich,et al.  Statistical properties of lorentz gas with periodic configuration of scatterers , 1981 .

[20]  O. Penrose Foundations of statistical mechanics , 1969 .

[21]  Michael Barr,et al.  The Emperor's New Mind , 1989 .

[22]  J. Lebowitz,et al.  Microscopic basis for Fick's law for self-diffusion , 1982 .

[23]  A. Masi,et al.  Mathematical Methods for Hydrodynamic Limits , 1991 .

[24]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[25]  Herbert Spohn,et al.  Microscopic models of hydrodynamic behavior , 1988 .

[26]  H. Stowell The emperor's new mind: By Roger Penrose, Oxford: Oxford University Press, 1989, $24.95, 466 pp. ISBN 0-19-851973-7 , 1991 .

[27]  O. Lanford Time evolution of large classical systems , 1975 .

[28]  James B. Hartle,et al.  Time Symmetry and Asymmetry in Quantum Mechanics and Quantum Cosmology , 1992 .