Jewels of Institution-Independent Model Theory

This paper is dedicated to Joseph Goguen, my beloved teacher and friend, on the ocassion of his 65th anniversary. It is a survey of institution-independent model theory as it stands today, the true form of abstract model theory which is based on the concept of institution. Institution theory was co-fathered by Joseph Goguen and Rod Burstall in late 1970’s. In the final part we discuss some philosophical roots of institution-independent methodologies.

[1]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[2]  Razvan Diaconescu An Institution-independent Proof of Craig Interpolation Theorem , 2004, Stud Logica.

[3]  Joseph A. Goguen,et al.  What is a Logic , 2007 .

[4]  Patrícia Duarte de Lima Machado,et al.  Unit Testing for CASL Architectural Specifications , 2002, MFCS.

[5]  Michael Makkai,et al.  Ultraproducts and categorical logic , 1985 .

[6]  George Gratzer,et al.  Universal Algebra , 1979 .

[7]  Till Mossakowski,et al.  Type Class Polymorphism in an Institutional Framework , 2004, WADT.

[8]  P. M. Cohn,et al.  THE METAMATHEMATICS OF ALGEBRAIC SYSTEMS , 1972 .

[9]  S. Lane Categories for the Working Mathematician , 1971 .

[10]  Petros S. Stefaneas,et al.  Logical support for modularisation , 1993 .

[11]  José Meseguer,et al.  A logical theory of concurrent objects and its realization in the Maude language , 1993 .

[12]  Andrzej Tarlecki,et al.  Quasi-varieties in Abstract Algebraic Institutions , 1986, J. Comput. Syst. Sci..

[13]  Joseph A. Goguen,et al.  Towards an Algebraic Semantics for the Object Paradigm , 1992, COMPASS/ADT.

[14]  Antonino Salibra,et al.  Interpolation and Compactness in Categories of Pre-Institutions , 1996, Math. Struct. Comput. Sci..

[15]  Andrzej Tarlecki,et al.  Bits and Pieces of the Theory of Institutions , 1985, ADT.

[16]  T. S. E. Maibaum,et al.  On a generalized modularization theorem , 2000, Inf. Process. Lett..

[17]  Marc Aiguier,et al.  Label Algebras and Exception Handling , 1994, Sci. Comput. Program..

[18]  Razvan Diaconescu,et al.  Institution-independent Ultraproducts , 2002, Fundam. Informaticae.

[19]  Razvan Diaconescu Proof Systems for Institutional Logic , 2006, J. Log. Comput..

[20]  Razvan Diaconescu Interpolation in Grothendieck Institutions , 2004, Theor. Comput. Sci..

[21]  José Meseguer,et al.  Conditioned Rewriting Logic as a United Model of Concurrency , 1992, Theor. Comput. Sci..

[22]  Günter Matthiessen,et al.  Regular and Strongly Finitary Structures Over Strongly Algebroidal Categories , 1978, Canadian Journal of Mathematics.

[23]  A. Zajonc,et al.  The Universe in a Single Atom , 2006 .

[24]  G. Hasenjaeger,et al.  Mathematical Interpretation of Formal Systems , 1957 .

[25]  Till Mossakowski Comorphism-Based Grothendieck Logics , 2002, MFCS.

[26]  Razvan Diaconescu,et al.  Extra Theory Morphisms for Institutions: Logical Semantics for Multi-Paradigm Languages , 1997, Appl. Categorical Struct..

[27]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[28]  Donald Sannella,et al.  Extended ML: Past, Present, and Future , 1990, ADT.

[29]  Corina Ĉırstea Institutionalizing Coalgebraic Modal Logic , 2002, CMCS.

[30]  José Luiz Fiadeiro,et al.  Mirror, Mirror in my Hand: A Duality between Specifications and Models of Process Behaviour , 1996, Math. Struct. Comput. Sci..

[31]  K. J. Barwise,et al.  Axioms for abstract model theory , 1974 .

[32]  Robin Milner,et al.  Theories for the Global Ubiquitous Computer , 2004, FoSSaCS.

[33]  Jerzy Loś,et al.  Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .

[34]  Andrei Popescu,et al.  An Institution-independent Generalization of Tarski's Elementary Chain Theorem , 2006, J. Log. Comput..

[35]  Till Mossakowski,et al.  Foundations of Heterogeneous Specification , 2002, WADT.

[36]  Razvan Diaconescu Elementary Diagrams in Institutions , 2004, J. Log. Comput..

[37]  A. Tarski,et al.  Arithmetical extensions of relational systems , 1958 .

[38]  Samson Abramsky,et al.  Category Theory and Computer Programming , 1986, Lecture Notes in Computer Science.

[39]  P. Burmeister A Model Theoretic Oriented Approach to Partial Algebras , 1986 .

[40]  Tomasz Borzyszkowski,et al.  Higher-Order Logic and Theorem Proving for Structured Specifications , 1999, WADT.

[41]  M. Makkai Stone duality for first order logic , 1987 .

[42]  J. Bell,et al.  Models and ultraproducts , 1971 .

[43]  Razvan Diaconescu,et al.  Logical foundations of CafeOBJ , 2002, Theor. Comput. Sci..

[44]  Peter D. Mosses,et al.  CASL: the Common Algebraic Specification Language , 2002, Theor. Comput. Sci..

[45]  Tomasz Borzyszkowski Logical systems for structured specifications , 2002, Theor. Comput. Sci..

[46]  Razvan Diaconescu,et al.  Abstract Beth definability in institutions , 2006, J. Symb. Log..

[47]  Martin Wirsing,et al.  Extraction of Structured Programs from Specification Proofs , 1999, WADT.

[48]  Virgil Emil Cazanescu,et al.  Weak Inclusion Systems , 1997, Math. Struct. Comput. Sci..

[49]  Michel Bidoit,et al.  On the Integration of Observability and Reachability Concepts , 2002, FoSSaCS.

[50]  Razvan Diaconescu,et al.  Herbrand theorems in arbitrary institutions , 2004, Inf. Process. Lett..

[51]  Andrzej Tarlecki,et al.  On the Existence of Free Models in Abstract Algebraic Institutuons , 1985, Theor. Comput. Sci..

[52]  Gul Agha,et al.  Research directions in concurrent object-oriented programming , 1993 .

[53]  Joseph A. Goguen,et al.  Institutions: abstract model theory for specification and programming , 1992, JACM.

[54]  Joseph A. Goguen,et al.  Some Fundamental Algebraic Tools for the Semantics of Computation: Part 3: Indexed Categories , 1991, Theor. Comput. Sci..