Jewels of Institution-Independent Model Theory
暂无分享,去创建一个
[1] Chen C. Chang,et al. Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .
[2] Razvan Diaconescu. An Institution-independent Proof of Craig Interpolation Theorem , 2004, Stud Logica.
[3] Joseph A. Goguen,et al. What is a Logic , 2007 .
[4] Patrícia Duarte de Lima Machado,et al. Unit Testing for CASL Architectural Specifications , 2002, MFCS.
[5] Michael Makkai,et al. Ultraproducts and categorical logic , 1985 .
[6] George Gratzer,et al. Universal Algebra , 1979 .
[7] Till Mossakowski,et al. Type Class Polymorphism in an Institutional Framework , 2004, WADT.
[8] P. M. Cohn,et al. THE METAMATHEMATICS OF ALGEBRAIC SYSTEMS , 1972 .
[9] S. Lane. Categories for the Working Mathematician , 1971 .
[10] Petros S. Stefaneas,et al. Logical support for modularisation , 1993 .
[11] José Meseguer,et al. A logical theory of concurrent objects and its realization in the Maude language , 1993 .
[12] Andrzej Tarlecki,et al. Quasi-varieties in Abstract Algebraic Institutions , 1986, J. Comput. Syst. Sci..
[13] Joseph A. Goguen,et al. Towards an Algebraic Semantics for the Object Paradigm , 1992, COMPASS/ADT.
[14] Antonino Salibra,et al. Interpolation and Compactness in Categories of Pre-Institutions , 1996, Math. Struct. Comput. Sci..
[15] Andrzej Tarlecki,et al. Bits and Pieces of the Theory of Institutions , 1985, ADT.
[16] T. S. E. Maibaum,et al. On a generalized modularization theorem , 2000, Inf. Process. Lett..
[17] Marc Aiguier,et al. Label Algebras and Exception Handling , 1994, Sci. Comput. Program..
[18] Razvan Diaconescu,et al. Institution-independent Ultraproducts , 2002, Fundam. Informaticae.
[19] Razvan Diaconescu. Proof Systems for Institutional Logic , 2006, J. Log. Comput..
[20] Razvan Diaconescu. Interpolation in Grothendieck Institutions , 2004, Theor. Comput. Sci..
[21] José Meseguer,et al. Conditioned Rewriting Logic as a United Model of Concurrency , 1992, Theor. Comput. Sci..
[22] Günter Matthiessen,et al. Regular and Strongly Finitary Structures Over Strongly Algebroidal Categories , 1978, Canadian Journal of Mathematics.
[23] A. Zajonc,et al. The Universe in a Single Atom , 2006 .
[24] G. Hasenjaeger,et al. Mathematical Interpretation of Formal Systems , 1957 .
[25] Till Mossakowski. Comorphism-Based Grothendieck Logics , 2002, MFCS.
[26] Razvan Diaconescu,et al. Extra Theory Morphisms for Institutions: Logical Semantics for Multi-Paradigm Languages , 1997, Appl. Categorical Struct..
[27] J. Lambek,et al. Introduction to higher order categorical logic , 1986 .
[28] Donald Sannella,et al. Extended ML: Past, Present, and Future , 1990, ADT.
[29] Corina Ĉırstea. Institutionalizing Coalgebraic Modal Logic , 2002, CMCS.
[30] José Luiz Fiadeiro,et al. Mirror, Mirror in my Hand: A Duality between Specifications and Models of Process Behaviour , 1996, Math. Struct. Comput. Sci..
[31] K. J. Barwise,et al. Axioms for abstract model theory , 1974 .
[32] Robin Milner,et al. Theories for the Global Ubiquitous Computer , 2004, FoSSaCS.
[33] Jerzy Loś,et al. Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .
[34] Andrei Popescu,et al. An Institution-independent Generalization of Tarski's Elementary Chain Theorem , 2006, J. Log. Comput..
[35] Till Mossakowski,et al. Foundations of Heterogeneous Specification , 2002, WADT.
[36] Razvan Diaconescu. Elementary Diagrams in Institutions , 2004, J. Log. Comput..
[37] A. Tarski,et al. Arithmetical extensions of relational systems , 1958 .
[38] Samson Abramsky,et al. Category Theory and Computer Programming , 1986, Lecture Notes in Computer Science.
[39] P. Burmeister. A Model Theoretic Oriented Approach to Partial Algebras , 1986 .
[40] Tomasz Borzyszkowski,et al. Higher-Order Logic and Theorem Proving for Structured Specifications , 1999, WADT.
[41] M. Makkai. Stone duality for first order logic , 1987 .
[42] J. Bell,et al. Models and ultraproducts , 1971 .
[43] Razvan Diaconescu,et al. Logical foundations of CafeOBJ , 2002, Theor. Comput. Sci..
[44] Peter D. Mosses,et al. CASL: the Common Algebraic Specification Language , 2002, Theor. Comput. Sci..
[45] Tomasz Borzyszkowski. Logical systems for structured specifications , 2002, Theor. Comput. Sci..
[46] Razvan Diaconescu,et al. Abstract Beth definability in institutions , 2006, J. Symb. Log..
[47] Martin Wirsing,et al. Extraction of Structured Programs from Specification Proofs , 1999, WADT.
[48] Virgil Emil Cazanescu,et al. Weak Inclusion Systems , 1997, Math. Struct. Comput. Sci..
[49] Michel Bidoit,et al. On the Integration of Observability and Reachability Concepts , 2002, FoSSaCS.
[50] Razvan Diaconescu,et al. Herbrand theorems in arbitrary institutions , 2004, Inf. Process. Lett..
[51] Andrzej Tarlecki,et al. On the Existence of Free Models in Abstract Algebraic Institutuons , 1985, Theor. Comput. Sci..
[52] Gul Agha,et al. Research directions in concurrent object-oriented programming , 1993 .
[53] Joseph A. Goguen,et al. Institutions: abstract model theory for specification and programming , 1992, JACM.
[54] Joseph A. Goguen,et al. Some Fundamental Algebraic Tools for the Semantics of Computation: Part 3: Indexed Categories , 1991, Theor. Comput. Sci..