Matrix Metalloproteinases: Regulators of the Tumor Microenvironment

[1]  S. Krane,et al.  Stromal regulation of vessel stability by MMP14 and TGFβ , 2010, Disease Models & Mechanisms.

[2]  Z. Werb,et al.  Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression. , 2010, Cancer research.

[3]  M. Terol,et al.  Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia b cell survival through its hemopexin domain. , 2010, Cancer cell.

[4]  Mikala Egeblad,et al.  Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling , 2009, Cell.

[5]  Yao‐Hua Song,et al.  Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. , 2009, Cancer letters.

[6]  P. Scherer,et al.  Mechanisms of obesity and related pathologies: The macro‐ and microcirculation of adipose tissue , 2009, The FEBS journal.

[7]  Hubing Shi,et al.  Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. , 2009, Cancer research.

[8]  Qiongqing Wang,et al.  ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. , 2009, Genes & development.

[9]  A. M. Houghton,et al.  Macrophage elastase kills bacteria within murine macrophages , 2009, Nature.

[10]  P. E. Van den Steen,et al.  Neutrophil MMP-9 Proenzyme, Unencumbered by TIMP-1, Undergoes Efficient Activation in Vivo and Catalytically Induces Angiogenesis via a Basic Fibroblast Growth Factor (FGF-2)/FGFR-2 Pathway* , 2009, The Journal of Biological Chemistry.

[11]  H. Saji,et al.  Development of a radiolabeled probe for detecting membrane type-1 matrix metalloproteinase on malignant tumors. , 2009, Biological & pharmaceutical bulletin.

[12]  Cheng-Zhong Zhang,et al.  Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand Factor , 2009, Science.

[13]  Raghu Kalluri,et al.  The basics of epithelial-mesenchymal transition. , 2009, The Journal of clinical investigation.

[14]  Z. Werb,et al.  Netting neutrophils in autoimmune small-vessel vasculitis , 2009, Nature Medicine.

[15]  Roger Y Tsien,et al.  In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer. , 2009, Integrative biology : quantitative biosciences from nano to macro.

[16]  D. Ribatti Endogenous inhibitors of angiogenesis: a historical review. , 2009, Leukemia research.

[17]  M. Seiki,et al.  Cytoplasmic tail of MT1‐MMP regulates macrophage motility independently from its protease activity , 2009, Genes to cells : devoted to molecular & cellular mechanisms.

[18]  F. Balkwill Tumour necrosis factor and cancer , 2009, Nature Reviews Cancer.

[19]  Chenwei Wang,et al.  Analysis of the matrix metalloproteinase family reveals that MMP8 is often mutated in melanoma , 2009, Nature Genetics.

[20]  Stephen J. Weiss,et al.  Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited , 2009, The Journal of cell biology.

[21]  G. Opdenakker,et al.  Synergistic up‐regulation of MCP‐2/CCL8 activity is counteracted by chemokine cleavage, limiting its inflammatory and anti‐tumoral effects , 2009, European journal of immunology.

[22]  W. Fu,et al.  Leptin induces migration and invasion of glioma cells through MMP‐13 production , 2009, Glia.

[23]  B. Glasheen,et al.  Distinct functions for the catalytic and hemopexin domains of a Drosophila matrix metalloproteinase , 2009, Proceedings of the National Academy of Sciences.

[24]  M. Lepage,et al.  New enzyme-activated solubility-switchable contrast agent for magnetic resonance imaging: from synthesis to in vivo imaging. , 2009, Journal of medicinal chemistry.

[25]  Valerie M. Weaver,et al.  A tense situation: forcing tumour progression , 2009, Nature Reviews Cancer.

[26]  J. Erler,et al.  Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. , 2009, Cancer cell.

[27]  D. Albertson,et al.  Rac 1 b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability , 2009 .

[28]  Kenneth M. Yamada,et al.  Direct visualization of protease activity on cells migrating in three-dimensions. , 2009, Matrix Biology.

[29]  G. Murphy The ADAMs: signalling scissors in the tumour microenvironment , 2008, Nature Reviews Cancer.

[30]  A. Dufour,et al.  Role of the hemopexin domain of matrix metalloproteinases in cell migration , 2008, Journal of cellular physiology.

[31]  J. Foidart,et al.  ADAMTS-1 metalloproteinase promotes tumor development through the induction of a stromal reaction in vivo. , 2008, Cancer research.

[32]  Xiaodong Li,et al.  Predictive value of MMP‐7 expression for response to chemotherapy and survival in patients with non‐small cell lung cancer , 2008, Cancer science.

[33]  Hiroyuki Aburatani,et al.  The S100A8–serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase , 2008, Nature Cell Biology.

[34]  A. Czirók,et al.  Matrix metalloproteinase 2-integrin alpha(v)beta3 binding is required for mesenchymal cell invasive activity but not epithelial locomotion: a computational time-lapse study. , 2008, Molecular biology of the cell.

[35]  Peter Friedl,et al.  Tube travel: the role of proteases in individual and collective cancer cell invasion. , 2008, Cancer research.

[36]  J. Fridman,et al.  Synergistic inhibition with a dual epidermal growth factor receptor/HER-2/neu tyrosine kinase inhibitor and a disintegrin and metalloprotease inhibitor. , 2008, Cancer research.

[37]  Mikala Egeblad,et al.  Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy , 2008, Disease Models & Mechanisms.

[38]  D. Edwards,et al.  The ADAM metalloproteinases , 2008, Molecular Aspects of Medicine.

[39]  J. Keski‐Oja,et al.  MT1-MMP releases latent TGF-beta1 from endothelial cell extracellular matrix via proteolytic processing of LTBP-1. , 2008, Experimental cell research.

[40]  E. Motrescu,et al.  Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle , 2008, Biological chemistry.

[41]  H. Rammensee,et al.  Tumor-associated MICA is shed by ADAM proteases. , 2008, Cancer research.

[42]  J. Massagué,et al.  TGFβ in Cancer , 2008, Cell.

[43]  Christopher M. Overall,et al.  Matrix Metalloproteinase Processing of CXCL11/I-TAC Results in Loss of Chemoattractant Activity and Altered Glycosaminoglycan Binding* , 2008, Journal of Biological Chemistry.

[44]  D. Missé,et al.  Potentiation of NK cell-mediated cytotoxicity in human lung adenocarcinoma: role of NKG2D-dependent pathway. , 2008, International immunology.

[45]  Karen D. Cowden Dahl,et al.  Matrix metalloproteinase 9 is a mediator of epidermal growth factor-dependent e-cadherin loss in ovarian carcinoma cells. , 2008, Cancer research.

[46]  C. Smas,et al.  Wdnm1-like, a new adipokine with a role in MMP-2 activation. , 2008, American journal of physiology. Endocrinology and metabolism.

[47]  L. Matrisian,et al.  Imaging matrix metalloproteinases in cancer , 2008, Cancer and Metastasis Reviews.

[48]  L. Matrisian,et al.  Optical Imaging of Matrix Metalloproteinase-7 Activity in Vivo Using a Proteolytic Nanobeacon , 2008, Molecular imaging.

[49]  P. Carmeliet,et al.  Modeling lymphangiogenesis in a three-dimensional culture system , 2008, Nature Methods.

[50]  X. Puente,et al.  Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. , 2008, Cancer research.

[51]  S. Vandenberg,et al.  HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. , 2008, Cancer cell.

[52]  G. Ahn,et al.  Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. , 2008, Cancer cell.

[53]  Anne M Manicone,et al.  Matrix metalloproteinases as modulators of inflammation. , 2008, Seminars in cell & developmental biology.

[54]  Alfredo Molinolo,et al.  Matrix Metalloproteinase-activated Anthrax Lethal Toxin Demonstrates High Potency in Targeting Tumor Vasculature* , 2008, Journal of Biological Chemistry.

[55]  J. Quigley,et al.  Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis , 2007, Proceedings of the National Academy of Sciences.

[56]  C. López-Otín,et al.  Emerging roles of proteases in tumour suppression , 2007, Nature Reviews Cancer.

[57]  Viola Vogel,et al.  Force-Induced Unfolding of Fibronectin in the Extracellular Matrix of Living Cells , 2007, PLoS biology.

[58]  M. Stack,et al.  Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion , 2007, Nature Cell Biology.

[59]  Carlos López-Otín,et al.  The FASEB Journal • Research Communication Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8) , 2022 .

[60]  A. Küpelioğlu,et al.  Matrix metalloproteinase‐9,‐3 and tissue inhibitor of matrix metalloproteinase‐1 in colorectal cancer: relationship to clinicopathological variables , 2007, Cell biochemistry and function.

[61]  B. Strooper,et al.  ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death , 2007, Cell Death and Differentiation.

[62]  Wan-Wan Lin,et al.  A cytokine-mediated link between innate immunity, inflammation, and cancer. , 2007, The Journal of clinical investigation.

[63]  Andrew J. Ewald,et al.  Matrix metalloproteinases and the regulation of tissue remodelling , 2007, Nature Reviews Molecular Cell Biology.

[64]  Hiroyuki Aburatani,et al.  Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis , 2006, Nature Cell Biology.

[65]  Kevin Wei,et al.  A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development , 2006, The Journal of experimental medicine.

[66]  Christopher Chiu,et al.  Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis , 2006, Proceedings of the National Academy of Sciences.

[67]  A. M. Houghton,et al.  Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. , 2006, Cancer research.

[68]  Stephen J. Weiss,et al.  A Pericellular Collagenase Directs the 3-Dimensional Development of White Adipose Tissue , 2006, Cell.

[69]  G. Opdenakker,et al.  Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis , 2006, The Journal of experimental medicine.

[70]  J. Quigley,et al.  Matrix metalloproteinases and tumor metastasis , 2006, Cancer and Metastasis Reviews.

[71]  A. M. Houghton,et al.  Elastin fragments drive disease progression in a murine model of emphysema. , 2006, The Journal of clinical investigation.

[72]  Gillian Murphy,et al.  Structure and function of matrix metalloproteinases and TIMPs. , 2006, Cardiovascular research.

[73]  A. Kraneveld,et al.  A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation , 2006, Nature Medicine.

[74]  Jeffrey T. Chang,et al.  Oncogenic pathway signatures in human cancers as a guide to targeted therapies , 2006, Nature.

[75]  L. Coussens,et al.  Paradoxical roles of the immune system during cancer development , 2006, Nature Reviews Cancer.

[76]  S. Rafii,et al.  VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche , 2005, Nature.

[77]  T. Salo,et al.  Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. , 2005, Experimental cell research.

[78]  D. Albertson,et al.  Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability , 2005, Nature.

[79]  H. Lane,et al.  ERBB Receptors and Cancer: The Complexity of Targeted Inhibitors , 2005, Nature Reviews Cancer.

[80]  B. de Strooper,et al.  ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  M. Luisa Iruela-Arispe,et al.  Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors , 2005, The Journal of cell biology.

[82]  Tomoyuki Shirai,et al.  MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. , 2005, Cancer cell.

[83]  P Cuniasse,et al.  Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs. , 2005, Biochimie.

[84]  A. Agarwal,et al.  PAR1 Is a Matrix Metalloprotease-1 Receptor that Promotes Invasion and Tumorigenesis of Breast Cancer Cells , 2005, Cell.

[85]  M. Langenskiöld,et al.  Increased plasma MMP-2 protein expression in lymph node-positive patients with colorectal cancer , 2005, International Journal of Colorectal Disease.

[86]  Roger Y Tsien,et al.  Tumor imaging by means of proteolytic activation of cell-penetrating peptides. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[87]  A. Godzik,et al.  Non-proteolytic, Receptor/Ligand Interactions Associate Cellular Membrane Type-1 Matrix Metalloproteinase with the Complement Component C1q* , 2004, Journal of Biological Chemistry.

[88]  Steven Shapiro,et al.  Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP , 2004, The Journal of cell biology.

[89]  J. Pollard,et al.  A Paracrine Loop between Tumor Cells and Macrophages Is Required for Tumor Cell Migration in Mammary Tumors , 2004, Cancer Research.

[90]  M. Karin,et al.  Inhibition of NF-κB in cancer cells converts inflammation- induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression , 2004 .

[91]  William C. Parks,et al.  Matrix metalloproteinases as modulators of inflammation and innate immunity , 2004, Nature Reviews Immunology.

[92]  Otmar Schober,et al.  Scintigraphic Imaging of Matrix Metalloproteinase Activity in the Arterial Wall In Vivo , 2004, Circulation.

[93]  A. Zychlinsky,et al.  Neutrophil Extracellular Traps Kill Bacteria , 2004, Science.

[94]  K. Conant,et al.  Matrix Metalloproteinase 1 Interacts with Neuronal Integrins and Stimulates Dephosphorylation of Akt* , 2004, Journal of Biological Chemistry.

[95]  I. Saiki,et al.  Inhibition of lymphangiogenesis‐related properties of murine lymphatic endothelial cells and lymph node metastasis of lung cancer by the matrix metalloproteinase inhibitor MMI270 , 2004, Cancer science.

[96]  M. Karin,et al.  Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. , 2004, Cancer cell.

[97]  C. López-Otín,et al.  Loss of collagenase-2 confers increased skin tumor susceptibility to male mice , 2003, Nature Genetics.

[98]  W. Parks,et al.  Hypochlorous Acid Generated by Myeloperoxidase Modifies Adjacent Tryptophan and Glycine Residues in the Catalytic Domain of Matrix Metalloproteinase-7 (Matrilysin) , 2003, Journal of Biological Chemistry.

[99]  C. Cordon-Cardo,et al.  A multigenic program mediating breast cancer metastasis to bone. , 2003, Cancer cell.

[100]  R. Hynes,et al.  Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. , 2003, Cancer cell.

[101]  Hiroshi Fukuda,et al.  Tumor detection using 18F-labeled matrix metalloproteinase-2 inhibitor. , 2003, Nuclear medicine and biology.

[102]  R. Hynes,et al.  Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. , 2003, Cancer cell.

[103]  William C. Parks,et al.  Matrilysin Shedding of Syndecan-1 Regulates Chemokine Mobilization and Transepithelial Efflux of Neutrophils in Acute Lung Injury , 2002, Cell.

[104]  J. Wallace,et al.  Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. , 2002, Blood.

[105]  Lynda F. Bonewald,et al.  Proteolysis of Latent Transforming Growth Factor-β (TGF-β)-binding Protein-1 by Osteoclasts , 2002, The Journal of Biological Chemistry.

[106]  S. Rafii,et al.  Recruitment of Stem and Progenitor Cells from the Bone Marrow Niche Requires MMP-9 Mediated Release of Kit-Ligand , 2002, Cell.

[107]  D. Sheppard,et al.  The integrin αvβ8 mediates epithelial homeostasis through MT1-MMP–dependent activation of TGF-β1 , 2002, The Journal of cell biology.

[108]  Rakesh K Jain,et al.  Lymphatic Metastasis in the Absence of Functional Intratumor Lymphatics , 2002, Science.

[109]  B. Fingleton,et al.  Matrix Metalloproteinase Inhibitors and Cancer—Trials and Tribulations , 2002, Science.

[110]  Z. Werb,et al.  New functions for the matrix metalloproteinases in cancer progression , 2002, Nature Reviews Cancer.

[111]  Sarah L Dallas,et al.  Proteolysis of latent transforming growth factor-beta (TGF-beta )-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. , 2002, The Journal of biological chemistry.

[112]  M. Washington,et al.  Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas. , 2002, The Journal of clinical investigation.

[113]  Juan P. Albar,et al.  Membrane Type 1-Matrix Metalloproteinase Is Activated during Migration of Human Endothelial Cells and Modulates Endothelial Motility and Matrix Remodeling* , 2001, The Journal of Biological Chemistry.

[114]  R. Lijnen,et al.  Inactivation of the serpin alpha(2)-antiplasmin by stromelysin-1. , 2001, Biochimica et biophysica acta.

[115]  Ralph Weissleder,et al.  In vivo molecular target assessment of matrix metalloproteinase inhibition , 2001, Nature Medicine.

[116]  Z. Werb,et al.  Stromelysin-1 Regulates Adipogenesis during Mammary Gland Involution , 2001, The Journal of cell biology.

[117]  I. Stamenkovic,et al.  Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. , 2001, Cancer research.

[118]  Z. Werb,et al.  How matrix metalloproteinases regulate cell behavior. , 2001, Annual review of cell and developmental biology.

[119]  P. E. Van den Steen,et al.  Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. , 2000, Blood.

[120]  Shigeyoshi Itohara,et al.  Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis , 2000, Nature Cell Biology.

[121]  Z. Werb,et al.  The Serpin α1-Proteinase Inhibitor Is a Critical Substrate for Gelatinase B/MMP-9 In Vivo , 2000, Cell.

[122]  I. Stamenkovic,et al.  Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. , 2000, Genes & development.

[123]  B. Fingleton,et al.  Matrix metalloproteinase-7-dependent release of tumor necrosis factor-alpha in a model of herniated disc resorption. , 2000, The Journal of clinical investigation.

[124]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[125]  J. Woessner,et al.  Matrix metalloproteinases and TIMPs , 2000 .

[126]  H. Dvorak,et al.  The association between tumour progression and vascularity in myxofibrosarcoma and myxoid/round cell liposarcoma , 2000, Virchows Archiv.

[127]  D. Pinkel,et al.  The Stromal Proteinase MMP3/Stromelysin-1 Promotes Mammary Carcinogenesis , 1999, Cell.

[128]  R. Pierce,et al.  Matrix metalloproteinases generate angiostatin: effects on neovascularization. , 1998, Journal of immunology.

[129]  A. Newby,et al.  Synergistic upregulation of metalloproteinase‐9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF‐κB , 1998, FEBS letters.

[130]  Z. Werb,et al.  Matrix Metalloproteinase Stromelysin-1 Triggers a Cascade of Molecular Alterations That Leads to Stable Epithelial-to-Mesenchymal Conversion and a Premalignant Phenotype in Mammary Epithelial Cells , 1997, The Journal of cell biology.

[131]  B. C. Patterson,et al.  Angiostatin-converting Enzyme Activities of Human Matrilysin (MMP-7) and Gelatinase B/Type IV Collagenase (MMP-9)* , 1997, The Journal of Biological Chemistry.

[132]  A. Strongin,et al.  Mechanism Of Cell Surface Activation Of 72-kDa Type IV Collagenase , 1995, The Journal of Biological Chemistry.

[133]  S. Weiss,et al.  Oxidative autoactivation of latent collagenase by human neutrophils. , 1985, Science.

[134]  L. Liotta,et al.  Metastatic potential correlates with enzymatic degradation of basement membrane collagen , 1980, Nature.

[135]  I. M. Neiman,et al.  [Inflammation and cancer]. , 1974, Patologicheskaia fiziologiia i eksperimental'naia terapiia.

[136]  C. Lapière,et al.  Collagenolytic activity in amphibian tissues: a tissue culture assay. , 1962, Proceedings of the National Academy of Sciences of the United States of America.