Disturbance decoupled observer design: a unified viewpoint

This paper is concerned with the observer design for linear systems with unknown inputs. An equivalent system, which is free of unknown inputs, is derived for the purpose of the observer design. Based on the equivalent system description, one can design an observer (full order, reduced order, minimal order or functional) for linear systems with unknown inputs using well-known techniques. It is shown that the equivalent system exists as long as there exists a disturbance decoupled observer. Two sets of the known existence conditions of disturbance decoupled observers are proved to be equivalent. >

[1]  D. S. Tracy,et al.  Generalized Inverse Matrices: With Applications to Statistics , 1971 .

[2]  K. S. Banerjee Generalized Inverse of Matrices and Its Applications , 1973 .

[3]  P. Dorato,et al.  Observing the states of systems with unmeasurable disturbances , 1975 .

[4]  S. Bhattacharyya Observer design for linear systems with unknown inputs , 1978 .

[5]  P. Kudva,et al.  Observers for linear systems with unknown inputs , 1980 .

[6]  R. Mukundan,et al.  On designing reduced-order observers for linear time-invariant systems subject to unknown inputs , 1982 .

[7]  N. Kobayashi,et al.  An observer design for linear systems with unknown inputs , 1982 .

[8]  Jerzy E. Kurek,et al.  Observation of the state vector of linear multivariable systems with unknown inputs , 1982 .

[9]  J. Kurek The state vector reconstruction for linear systems with unknown inputs , 1983 .

[10]  M. Hautus Strong detectability and observers , 1983 .

[11]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[12]  P. C. Müller,et al.  Decentralized State Observers for Large-Scale Systems , 1984 .

[13]  F. Fairman,et al.  Disturbance decoupled observer design via singular value decomposition , 1984 .

[14]  D. Konik,et al.  Zustandsermittlung bei unbekanntem Eingangssignal. II , 1986 .

[15]  D. Konik,et al.  Zustandsermittlung bei unbekanntem Eingangssignal / State estimation with unknown input signal , 1986 .

[16]  N. Viswanadham,et al.  Robust Observer Design with Application to Fault Detection , 1988, 1988 American Control Conference.

[17]  N. Viswanadham,et al.  Actuator fault detection and isolation in linear systems , 1988 .

[18]  R. W. Wilde,et al.  Observers for linear systems with unknown inputs , 1988 .

[19]  Young-Jin Park,et al.  Closed-loop state and input observer for systems with unknown inputs , 1988 .

[20]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results , 1990, Autom..

[21]  M. Saif,et al.  A novel approach to the design of unknown input observers , 1991 .

[22]  M. Hou,et al.  Design of observers for linear systems with unknown inputs , 1992 .

[23]  P. Müller,et al.  On the Design of Decentralized Observers , 1992 .

[24]  Mehrdad Saif,et al.  Decentralized state estimation in large-scale interconnected dynamical systems , 1992, Autom..

[25]  P. Müller,et al.  Fault detection and isolation observers , 1994 .

[26]  Peter C. Müller,et al.  Design of decentralized linear state function observers , 1994, Autom..

[27]  M. Darouach,et al.  Full-order observers for linear systems with unknown inputs , 1994, IEEE Trans. Autom. Control..

[28]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .