Intercalation of CO2 Selected by Type of Interlayer Cation in Dried Synthetic Hectorite

Clay minerals are abundant in caprock formations for anthropogenic storage sites for CO2, and they are potential capture materials for CO2 postcombustion sequestration. We investigate the response to CO2 exposure of dried fluorohectorite clay intercalated with Li+, Na+, Cs+, Ca2+, and Ba2+. By in situ powder X-ray diffraction, we demonstrate that fluorohectorite with Na+, Cs+, Ca2+, or Ba2+ does not swell in response to CO2 and that Li-fluorohectorite does swell. A linear uptake response is observed for Li-fluorohectorite by gravimetric adsorption, and we relate the adsorption to tightly bound residual water, which exposes adsorption sites within the interlayer. The experimental results are supported by DFT calculations.

[1]  D. Hoyt,et al.  Interlayer Cation Polarizability Affects Supercritical Carbon Dioxide Adsorption by Swelling Clays. , 2022, Langmuir : the ACS journal of surfaces and colloids.

[2]  K. Knudsen,et al.  Influence of CO2 on Nanoconfined Water in a Clay Mineral , 2022, The Journal of Physical Chemistry C.

[3]  D. Brilman,et al.  Interlayer Cation-Controlled Adsorption of Carbon Dioxide in Anhydrous Montmorillonite Clay , 2021, The Journal of Physical Chemistry C.

[4]  K. Knudsen,et al.  CO2 Adsorption Enhanced by Tuning the Layer Charge in a Clay Mineral , 2021, Langmuir : the ACS journal of surfaces and colloids.

[5]  J. Fossum,et al.  Controlled sample environment for studying solid–gas interactions by in situ powder X-ray diffraction , 2021, Journal of applied crystallography.

[6]  K. Knudsen,et al.  CO2 Capture by Nickel Hydroxide Interstratified in the Nanolayered Space of a Synthetic Clay Mineral , 2020, The Journal of Physical Chemistry C.

[7]  K. Knudsen,et al.  Spontaneous formation of an ordered interstratification upon Ni-exchange of Na-fluorohectorite , 2020 .

[8]  T. Seydel,et al.  Physicochemical characterisation of fluorohectorite: Water dynamics and nanocarrier properties , 2020 .

[9]  P. Heitjans,et al.  Rapid Low-Dimensional Li+ Ion Hopping Processes in Synthetic Hectorite-Type Li0.5[Mg2.5Li0.5]Si4O10F2 , 2020, Chemistry of materials : a publication of the American Chemical Society.

[10]  B. Grambow,et al.  Thermodynamic data of adsorption reveal the entry of CH4 and CO2 in a smectite clay interlayer. , 2020, Physical chemistry chemical physics : PCCP.

[11]  J. Boily,et al.  Deconvolution of Smectite Hydration Isotherms , 2019, ACS Earth and Space Chemistry.

[12]  A. O. Yazaydin,et al.  Tuning the Hydrophobicity of Layer-Structure Silicates To Promote Adsorption of Nonaqueous Fluids: Effects of F– for OH– Substitution on CO2 Partitioning into Smectite Interlayers , 2019, The Journal of Physical Chemistry C.

[13]  W. Gates,et al.  The pH influence on the intercalation of the bioactive agent ciprofloxacin in fluorohectorite , 2018, Applied Clay Science.

[14]  J. Eckert,et al.  A nano-silicate material with exceptional capacity for CO2 capture and storage at room temperature , 2018, Scientific Reports.

[15]  S. Förster,et al.  Onset of Osmotic Swelling in Highly Charged Clay Minerals. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[16]  A. O. Yazaydin,et al.  Clay Swelling in Dry Supercritical Carbon Dioxide: Effects of Interlayer Cations on the Structure, Dynamics, and Energetics of CO2 Intercalation Probed by XRD, NMR, and GCMD Simulations , 2018 .

[17]  D. Hoyt,et al.  Tipping Point for Expansion of Layered Aluminosilicates in Weakly Polar Solvents: Supercritical CO2. , 2017, ACS applied materials & interfaces.

[18]  A. W. Ashton,et al.  Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2 , 2017, Journal of applied crystallography.

[19]  Shuyu Sun,et al.  Molecular Simulation Study of Montmorillonite in Contact with Variably Wet Supercritical Carbon Dioxide , 2017 .

[20]  S. Förster,et al.  In-Depth Insights into the Key Steps of Delamination of Charged 2D Nanomaterials. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[21]  A. O. Yazaydin,et al.  Cation and Water Structure, Dynamics, and Energetics in Smectite Clays: A Molecular Dynamics Study of Ca–Hectorite , 2016 .

[22]  A. O. Yazaydin,et al.  Structure, energetics and dynamics of Cs+ and H2O in hectorite: Molecular dynamics simulations with an unconstrained substrate surface. , 2016 .

[23]  H. M. Wentinck,et al.  On sorption and swelling of CO2 in clays , 2016 .

[24]  Y. Leng,et al.  Molecular Understanding of CO2 and H2O in a Montmorillonite Clay Interlayer under CO2 Geological Sequestration Conditions , 2016 .

[25]  Herbert T. Schaef,et al.  Competitive Sorption of CO2 and H2O in 2:1 Layer Phyllosilicates , 2015 .

[26]  T. Plivelic,et al.  Intercalation and Retention of Carbon Dioxide in a Smectite Clay promoted by Interlayer Cations , 2015, Scientific Reports.

[27]  V. Glezakou,et al.  Microstructural response of variably hydrated Ca-rich montmorillonite to supercritical CO2. , 2014, Environmental science & technology.

[28]  P. F. Martin,et al.  In situ study of CO₂ and H₂O partitioning between Na-montmorillonite and variably wet supercritical carbon dioxide. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[29]  Kristian Berland,et al.  Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional , 2013, 1309.1756.

[30]  K. Jordan,et al.  Molecular Dynamics Simulations of Carbon Dioxide Intercalation in Hydrated Na-Montmorillonite , 2013 .

[31]  J. Senker,et al.  Nanoplatelets of sodium hectorite showing aspect ratios of ≈20,000 and superior purity. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[32]  E. Ilton,et al.  CO2 sorption to subsingle hydration layer montmorillonite clay studied by excess sorption and neutron diffraction measurements. , 2013, Environmental science & technology.

[33]  J. Breu,et al.  Single crystal structure refinement of one- and two-layer hydrates of sodium fluorohectorite , 2012 .

[34]  A. Busch,et al.  Interaction of carbon dioxide with Na-exchanged montmorillonite at pressures to 640 bars: Implications for CO2 sequestration , 2012 .

[35]  P. F. Martin,et al.  In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[36]  T. Plivelic,et al.  X-ray studies of carbon dioxide intercalation in Na-fluorohectorite clay at near-ambient conditions. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[37]  R. Cygan,et al.  Molecular simulations of carbon dioxide and water: cation solvation. , 2010, Environmental science & technology.

[38]  Y. Filinchuk,et al.  Versatile in situ powder X-ray diffraction cells for solid–gas investigations , 2010, Journal of applied crystallography.

[39]  U. A. Handge,et al.  Tailoring shear-stiff, mica-like nanoplatelets. , 2010, ACS nano.

[40]  Andreas Busch,et al.  Carbon dioxide storage potential of shales , 2008 .

[41]  G. Limousin,et al.  Sorption isotherms: A review on physical bases, modeling and measurement , 2007 .

[42]  P. Komadel,et al.  Preparation and Properties of Reduced-Charge Smectites — A Review , 2005 .

[43]  J. Breu,et al.  Single crystal structure refinement of tetramethylammonium-hectorite , 2005 .

[44]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[45]  B. Bohor,et al.  Interlamellar Adsorption of Carbon Dioxide by Smectites , 1974 .

[46]  B. Bohor,et al.  Surface Area of Montmorillonite from the Dynamic Sorption of Nitrogen and Carbon Dioxide , 1968 .

[47]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[48]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[49]  U. Hofmann,et al.  Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung , 1950 .

[50]  R. Pini,et al.  Measuring and modelling supercritical adsorption of CO2 and CH4 on montmorillonite source clay , 2019, Microporous and Mesoporous Materials.

[51]  A. Ismail,et al.  Gas Separation Membranes: Polymeric and Inorganic , 2015 .

[52]  Vanda A. Glezakou,et al.  CO2 Utilization and Storage in Shale Gas Reservoirs: Experimental Results and Economic Impacts , 2014 .

[53]  P. F. Martin,et al.  Clay Hydration/dehydration in Dry to Water-saturated Supercritical CO2: Implications for Caprock Integrity , 2013 .

[54]  P. F. Martin,et al.  In situ XRD Study of Ca2+ Saturated Montmorillonite (STX-1) Exposed to Anhydrous and Wet Supercritical Carbon Dioxide , 2012 .

[55]  Faïza Bergaya,et al.  Handbook of clay science , 2006 .

[56]  K. Måløy,et al.  Hydration transitions in a nanolayered synthetic silicate: A synchrotron x-ray scattering study , 2003 .