방사 기저 함수 신경망을 이용한 3차원 얼굴인식
暂无分享,去创建一个
본 논문에서는 3차원 얼굴인식을 위한 방사 기저 함수 신경망 기반의 새로운 전역적 형태 특징과 그 특징을 추출하는 방법을 제안한다. 방사 기저 함수 신경망은 방사 기저 함수들의 가중합으로써, 얼굴 형태 정보의 비선형성을 방사 기저 함수의 선형합으로 잘 표현한다. 이 논문에서는 얼굴의 가로 방향 프로파일을 학습된 방사 기저 함수 신경망에 적용시켰을 때 생성되는 가중치를 새로운 전역적 형태 특징으로 제안한다. 제안하는 전역적 형태 특징의 경우 국소적 특징의 특성을 가지며, 일반적인 전역적 특징의 특성인 특징의 복잡도도 감소시킨다. 100명의 데이터베이스 영상과 100명에 대한 서로 다른 3개의 포즈를 포함하는 300개의 테스트 영상을 이용한 실험에서 제안하는 전역적 형태 특징과 은닉 마르코프 모델을 이용한 특징 비교를 통해서 94.7%의 인식률을 얻었다.