Multiobjective and multiscale optimization of composite materials by means of evolutionary computations

The paper deals with the multiobjective and multiscale optimization of heterogeneous structures by means of computational intelligence methods. The aim of the paper is to find optimal properties of composite structures in a macro scale modifying their microstructure. At least two contradictory optimization criteria are considered simultaneously. A numerical homogenization concept with a representative volume element is applied to obtain equivalent macro-scale elastic constants. An in-house multiobjective evolutionary algorithm MOOPTIM is applied to solve the considered optimization tasks. The finite element method is used to solve the boundary-value problem in both scales. A numerical example is attached.

[1]  R. Gibson Principles of Composite Material Mechanics , 1994 .

[2]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[3]  A. Długosz,et al.  Multiobjective evolutionary optimization of MEMS structures , 2010 .

[4]  Kim Fung Man,et al.  Multiobjective Optimization , 2011, IEEE Microwave Magazine.

[5]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  Kaisa Miettinen,et al.  Global formulation for interactive multiobjective optimization , 2011, OR Spectr..

[7]  A. Długosz,et al.  Evolutionary multi-objective optimization of laminates , 2008 .

[8]  Maria Kashtalyan Principles of Composite Material Mechanics – Third edition, R. F. Gibson, CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL, 33487-2742, USA. 2012. 653pp. Illustrated. £69.99. ISBN 978-1-4398-5005-3. , 2012 .

[9]  Klaus Hackl,et al.  Application of the multiscale FEM to the modeling of nonlinear multiphase materials , 2009 .

[10]  Jonathan Timmis,et al.  Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .

[11]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[12]  Jonathan Timmis,et al.  Artificial immune systems - a new computational intelligence paradigm , 2002 .

[13]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[14]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[15]  Franck J. Vernerey,et al.  Adaptive concurrent multiscale model for fracture and crack propagation in heterogeneous media , 2014 .

[16]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[17]  P. Siarry,et al.  Multiobjective Optimization: Principles and Case Studies , 2004 .

[18]  A. Długosz,et al.  Optimization in multiscale thermoelastic problems , 2014 .

[19]  A. Mrózek,et al.  A computational continuum-discrete model of materials , 2007 .

[20]  Arkadiusz Denisiewicz,et al.  TWO-SCALE NUMERICAL HOMOGENIZATION OF THE CONSTITUTIVE PARAMETERS OF REACTIVE POWDER CONCRETE , 2014 .

[21]  E. Kröner Statistical continuum mechanics , 1971 .

[22]  Jacek Ptaszny,et al.  Numerical homogenization by using the fast multipole boundary element method , 2011 .

[23]  Tadeusz Burczyński,et al.  Two-scale identification of composites’ material constants by means of computational intelligence methods , 2014 .

[24]  Zvi Hashin,et al.  THEORY OF MECHANICAL BEHAVIOR OF HETEROGENEOUS MEDIA , 1963 .

[25]  M. Zako,et al.  Integrated design of graded microstructures of heterogeneous materials , 2000 .

[26]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[27]  Murat Köksalan,et al.  An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization , 2003, Manag. Sci..

[28]  Peter Wriggers,et al.  Introduction to Computational Micromechanics (Lecture Notes in Applied and Computational Mechanics) , 2004 .

[29]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[30]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[31]  Peter Wriggers,et al.  An Introduction to Computational Micromechanics , 2004 .

[32]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[33]  Carlos Alberto Brebbia,et al.  Boundary Elements: An Introductory Course , 1989 .

[34]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[35]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[36]  V Varvara Kouznetsova,et al.  Computational homogenization for the multi-scale analysis of multi-phase materials , 2002 .

[37]  J. Z. Zhu,et al.  The finite element method , 1977 .

[38]  Dominique Jeulin,et al.  Estimating RVE sizes for 2D/3D viscoplastic composite materials , 2006 .

[39]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[40]  V. Buryachenko Micromechanics of Heterogeneous Materials , 2007 .