The Capacity of Finite Abelian Group Codes Over Symmetric Memoryless Channels

The capacity of finite Abelian group codes over symmetric memoryless channels is determined. For certain important examples, such as m -PSK constellations over additive white Gaussian noise (AWGN) channels, with m a prime power, it is shown that this capacity coincides with the Shannon capacity; i.e., there is no loss in capacity using group codes. (This had previously been known for binary-linear codes used over binary-input output-symmetric memoryless channels.) On the other hand, a counterexample involving a three-dimensional geometrically uniform constellation is presented in which the use of Abelian group codes leads to a loss in capacity. The error exponent of the average group code is determined, and it is shown to be bounded away from the random-coding error exponent, at low rates, for finite Abelian groups not admitting Galois field structure.

[1]  V.W.S. Chan,et al.  Principles of Digital Communication and Coding , 1979 .

[2]  Hans-Andrea Loeliger,et al.  Convolutional codes over groups , 1996, IEEE Trans. Inf. Theory.

[3]  Mitchell D. Trott,et al.  The dynamics of group codes: Dual abelian group codes and systems , 2004, IEEE Transactions on Information Theory.

[4]  R. Cooke Real and Complex Analysis , 2011 .

[5]  David S. Slepian On neighbor distances and symmetry in group codes (Corresp.) , 1971, IEEE Trans. Inf. Theory.

[6]  Sandro Zampieri,et al.  Minimal Syndrome Formers for Group Codes , 1999, IEEE Trans. Inf. Theory.

[7]  David Burshtein,et al.  Bounds on the maximum-likelihood decoding error probability of low-density parity-check codes , 2000, IEEE Trans. Inf. Theory.

[8]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[9]  David Burshtein,et al.  On the application of LDPC codes to arbitrary discrete-memoryless channels , 2003, IEEE Transactions on Information Theory.

[10]  Federica Garin,et al.  Analysis of serial concatenation schemes for non-binary modulations , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[11]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[12]  David S. Slepian,et al.  Group codes for the Gaussian channel (Abstr.) , 1968, IEEE Trans. Inf. Theory.

[13]  Meir Feder,et al.  Random coding techniques for nonrandom codes , 1999, IEEE Trans. Inf. Theory.

[14]  Ingemar Ingemarsson Commutative group codes for the Gaussian channel , 1973, IEEE Trans. Inf. Theory.

[15]  Thomas E. Fuja,et al.  LDPC codes over rings for PSK modulation , 2005, IEEE Transactions on Information Theory.

[16]  Rolf Johannesson,et al.  Some Structural Properties of Convolutional Codes over Rings , 1998, IEEE Trans. Inf. Theory.

[17]  Alexander Barg,et al.  Random codes: Minimum distances and error exponents , 2002, IEEE Trans. Inf. Theory.

[18]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[19]  G. David Forney,et al.  Geometrically uniform codes , 1991, IEEE Trans. Inf. Theory.

[20]  Mitchell D. Trott,et al.  The dynamics of group codes: State spaces, trellis diagrams, and canonical encoders , 1993, IEEE Trans. Inf. Theory.

[21]  Dariush Divsalar,et al.  Labelings and encoders with the uniform bit error property with applications to serially concatenated trellis codes , 2002, IEEE Trans. Inf. Theory.

[22]  R. Dobrushin Asymptotic Optimality of Group and Systematic Codes for Some Channels , 1963 .

[23]  Hans-Andrea Loeliger,et al.  Signal sets matched to groups , 1991, IEEE Trans. Inf. Theory.

[24]  Roberto Garello,et al.  Geometrically uniform TCM codes over groups based on L × MPSK constellations , 1994, IEEE Trans. Inf. Theory.

[25]  Giacomo Como,et al.  Ensembles of codes over abelian groups , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[26]  G. Forney,et al.  Minimality and observability of group systems , 1994 .

[27]  Giacomo Como,et al.  Average Spectra and Minimum Distances of Low-Density Parity-Check Codes over Abelian Groups , 2008, SIAM J. Discret. Math..

[28]  R. Tennant Algebra , 1941, Nature.

[29]  I. Blake,et al.  Group Codes for the Gaussian Channel , 1975 .

[30]  Uri Erez,et al.  The ML decoding performance of LDPC ensembles over Z/sub q/ , 2005, IEEE Transactions on Information Theory.

[31]  Sandro Zampieri,et al.  System-theoretic properties of convolutional codes over rings , 2001, IEEE Trans. Inf. Theory.

[32]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[33]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[34]  Giuseppe Caire,et al.  Linear block codes over cyclic groups , 1995, IEEE Trans. Inf. Theory.

[35]  Robert G. Gallager,et al.  The random coding bound is tight for the average code (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[36]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[37]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[38]  Roberto Garello,et al.  Geometrically uniform partitions of L×MPSK constellations and related binary trellis codes , 1993, IEEE Trans. Inf. Theory.

[39]  Sandro Zampieri,et al.  Minimal and systematic convolutional codes over finite Abelian groups , 2004 .

[40]  Giacomo Como,et al.  Group Codes Outperform Binary-Coset Codes on Nonbinary Symmetric Memoryless Channels , 2010, IEEE Transactions on Information Theory.