Prediction of elastic properties of cement pastes at early ages

Cementitious materials are known to be sensitive to cracking at early ages. During the first days which follow the contact between water and cement, the system is continuously evolving, as its mechanical characteristics follow a rapid rate of change and the material is prone to cracking. One of the parameters that highly influence the behavior of the material at early ages is the Young's modulus. Analytical calculations, based on existing homogenization models and finite element calculations, applied on a discrete generated microstructure, are first considered in order to predict the elastic properties of the material. As long as the cohesive role played by the hydrates is not taken into account, results at early age remain inaccurate, especially for low watercement ratios. The need of modeling an intrinsic characteristic of cementitious materials setting arises. An approach, based on percolation and on the so-called burning algorithm, which takes into account explicitly the bonding role of hydrates and reveals a degree of hydration threshold below which the rigidity of the material is negligible, is therefore proposed. The evolution of the elastic characteristics is obtained by applying the previous computation methods to the percolation cluster given by the burning algorithm.

[1]  Zhihui Sun,et al.  Microstructure and early-age properties of Portland cement paste - Effects of connectivity of solid phases , 2005 .

[2]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  K. Van Breugel,et al.  Simulation of hydration and formation of structure in hardening cement-based materials , 1991 .

[4]  O. Laurence La fissuration due au retrait restreint dans les réparations minces en béton: apports combinés de l'expérimentation et de la modélisation , 2001 .

[5]  Vincent Waller,et al.  Relations entre composition des betons, exothermie en cours de prise et resistance en compression , 1999 .

[6]  Abdellatif Boumiz Etude comparee des evolutions mecaniques et chimiques des pates de ciment et mortiers a tres jeune age. Developpement des techniques acoustiques , 1995 .

[7]  F. Ulm,et al.  The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling , 2004 .

[8]  Farid Benboudjema,et al.  Mechanical threshold of cementitious materials at early age , 2005 .

[9]  Denis Damidot,et al.  Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker , 2001 .

[10]  Surendra P. Shah,et al.  Modeling the linear elastic properties of Portland cement paste , 2005 .

[11]  Haluk Aktan,et al.  Active and non-active porosity in concrete Part II: Evaluation of existing models , 2002 .

[12]  Luc Taerwe,et al.  Degree of hydration-based description of mechanical properties of early age concrete , 1996 .

[13]  Gilles Chanvillard,et al.  Modelling Elasticity of a Hydrating Cement Paste , 2007 .

[14]  Peter F. Dux,et al.  Tensile Properties of Early-Age Concrete , 2009 .

[15]  Hamlin M. Jennings,et al.  Model for the Developing Microstructure in Portland Cement Pastes , 1994 .

[16]  Dale P. Bentz,et al.  CEMHYD3D: A Three-Dimensional Cement Hydration and Microstructure Development Modelling Package. Version 2.0. , 2000 .

[17]  F. Larrard,et al.  EXTENSION DU DOMAINE D'APPLICATION DES REGLEMENTS DE CALCUL BAEL/BPEL AUX BETONS A 80 MPa - JUSTIFICATIONS SCIENTIFIQUES DES PROPOSITIONS AVANCEES - CALCUL DES DEFORMATIONS INSTANTANEES ET DIFFEREES DES BETONS A HAUTES PERFORMANCES , 1996 .

[18]  Siham Kamali-Bernard,et al.  3D multi-scale modelling of mechanical behaviour of sound and leached mortar , 2008 .

[19]  A.L.A. Fraaij,et al.  Experimental study and numerical simulation on the formation of microstructure in cementitious materials at early age , 2003 .

[20]  Vít S˘milauer,et al.  Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste , 2006 .

[21]  M. Krauß,et al.  Determination of initial degree of hydration for improvement of early-age properties of concrete using ultrasonic wave propagation , 2006 .

[22]  K. van Breugel,et al.  Simulation of the effect of geometrical changes of the microstructure on the deformational behaviour of hardening concrete , 1997 .

[23]  T. L. Brownyard,et al.  Studies of the Physical Properties of Hardened Portland Cement Paste , 1946 .

[24]  Pietro Lura,et al.  Early development of properties in a cement paste: A numerical and experimental study , 2003 .

[25]  Surendra P. Shah,et al.  A Comparison of Test Methods for Early-Age Behavior of Cementitious Materials | NIST , 2006 .

[26]  E. Guillon Durabilité des matériaux cimentaires : modélisation de l'influence des équilibres physico-chimiques sur la microstructure et les propriétés mécaniques résiduelles , 2004 .

[27]  Franz-Josef Ulm,et al.  A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials , 2003 .

[28]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[29]  J. Hattel,et al.  A numerical model for predicting the thermomechanical conditions during hydration of early-age concrete , 2003 .

[30]  E. Pozzo,et al.  Experimental control of deformability at short-term loadings in testing large-span prestressed structures , 1992 .