Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules.

A local explicitly correlated LMP2-F12 method is described that can be applied to large molecules. The steep scaling of computer time with molecular size is reduced by the use of local approximations, the scaling with respect to the basis set size per atom is improved by density fitting, and the slow convergence of the correlation energy with orbital basis size is much accelerated by the introduction of terms into the wave function that explicitly depend on the interelectronic distance. The local approximations lead to almost linear scaling of the computational effort with molecular size without much affecting the accuracy. At the same time, the domain error of conventional LMP2 is removed in LMP2-F12. LMP2-F12 calculations on molecules of chemical interest involving up to 80 atoms, 200 correlated electrons, and 2600 contracted Gaussian-type orbitals, as well as several reactions of large biochemical molecules are reported.

[1]  Hans-Joachim Werner,et al.  Local perturbative triples correction (T) with linear cost scaling , 2000 .

[2]  W. Klopper,et al.  Inclusion of the (T) triples correction into the linear‐r12 corrected coupled‐cluster model CCSD(R12) , 2006 .

[3]  F. Manby,et al.  An explicitly correlated second order Møller-Plesset theory using a frozen Gaussian geminal. , 2004, The Journal of chemical physics.

[4]  Edward F. Valeev,et al.  Coupled-cluster methods with perturbative inclusion of explicitly correlated terms: a preliminary investigation. , 2008, Physical chemistry chemical physics : PCCP.

[5]  Werner Kutzelnigg,et al.  r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l , 1985 .

[6]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[7]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[8]  F. Manby,et al.  Explicitly correlated second-order perturbation theory using density fitting and local approximations. , 2006, The Journal of chemical physics.

[9]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[10]  W. Klopper,et al.  Coupled-cluster theory with simplified linear-r(12) corrections: the CCSD(R12) model. , 2005, The Journal of chemical physics.

[11]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[12]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[13]  W. Klopper A hybrid scheme for the resolution-of-the-identity approximation in second-order Møller-Plesset linear-r(12) perturbation theory. , 2004, The Journal of chemical physics.

[14]  D. Tew,et al.  A diagonal orbital-invariant explicitly-correlated coupled-cluster method , 2008 .

[15]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[16]  Wim Klopper,et al.  Explicitly correlated second-order Møller–Plesset methods with auxiliary basis sets , 2002 .

[17]  Frederick R Manby,et al.  Explicitly correlated local second-order perturbation theory with a frozen geminal correlation factor. , 2006, The Journal of chemical physics.

[18]  H. Werner,et al.  Chapter 4 On the Selection of Domains and Orbital Pairs in Local Correlation Treatments , 2006 .

[19]  Christof Hättig,et al.  Quintuple-ζ quality coupled-cluster correlation energies with triple-ζ basis sets , 2007 .

[20]  Martin Schütz,et al.  A new, fast, semi-direct implementation of linear scaling local coupled cluster theory , 2002 .

[21]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[22]  Frederick R. Manby,et al.  Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals , 2003 .

[23]  Wim Klopper,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory , 1991 .

[24]  Christof Hättig,et al.  CC2 excitation energy calculations on large molecules using the resolution of the identity approximation , 2000 .

[25]  Peter Pulay,et al.  Comparison of the boys and Pipek–Mezey localizations in the local correlation approach and automatic virtual basis selection , 1993, J. Comput. Chem..

[26]  Ricardo A. Mata,et al.  Local correlation methods with a natural localized molecular orbital basis , 2007 .

[27]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[28]  Hans-Joachim Werner,et al.  Accurate calculations of intermolecular interaction energies using explicitly correlated wave functions. , 2008, Physical chemistry chemical physics : PCCP.

[29]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[30]  S. Ten-no,et al.  Density fitting for the decomposition of three-electron integrals in explicitly correlated electronic structure theory , 2003 .

[31]  R. Ahlrichs,et al.  Efficient molecular numerical integration schemes , 1995 .

[32]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[33]  J. Noga,et al.  Alternative formulation of the matrix elements in MP2‐R12 theory , 2005 .

[34]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[35]  Hans-Joachim Werner,et al.  Explicitly correlated RMP2 for high-spin open-shell reference states. , 2008, The Journal of chemical physics.

[36]  D. Tew,et al.  New correlation factors for explicitly correlated electronic wave functions. , 2005, The Journal of chemical physics.

[37]  Wim Klopper,et al.  Orbital-invariant formulation of the MP2-R12 method , 1991 .

[38]  Florian Weigend,et al.  A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency , 2002 .

[39]  Frederick R. Manby,et al.  Fast Hartree–Fock theory using local density fitting approximations , 2004 .

[40]  Wim Klopper,et al.  CC-R12, a correlation cusp corrected coupled-cluster method with a pilot application to the Be2 potential curve , 1992 .

[41]  Filipp Furche,et al.  Nuclear second analytical derivative calculations using auxiliary basis set expansions , 2004 .

[42]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. V. Connected triples beyond (T): Linear scaling local CCSDT-1b , 2002 .

[43]  J. Noga,et al.  Coupled cluster theory that takes care of the correlation cusp by inclusion of linear terms in the interelectronic coordinates , 1994 .

[44]  Frederick R Manby,et al.  Analytical energy gradients for local second-order Møller-Plesset perturbation theory using density fitting approximations. , 2004, The Journal of chemical physics.

[45]  Frederick R. Manby,et al.  Density fitting in second-order linear-r12 Møller–Plesset perturbation theory , 2003 .

[46]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[47]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[48]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials (Chem. Phys. Letters 240 (1995) 283-290) , 1995 .

[49]  Hans-Joachim Werner,et al.  Eliminating the domain error in local explicitly correlated second-order Møller-Plesset perturbation theory. , 2008, The Journal of chemical physics.

[50]  J. Noga,et al.  Second order explicitly correlated R12 theory revisited: a second quantization framework for treatment of the operators' partitionings. , 2007, The Journal of chemical physics.

[51]  W. Kutzelnigg,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. III. Second‐order Mo/ller–Plesset (MP2‐R12) calculations on molecules of first row atoms , 1991 .

[52]  Brett I. Dunlap,et al.  Robust and variational fitting , 2000 .

[53]  Hans-Joachim Werner,et al.  A simple and efficient CCSD(T)-F12 approximation. , 2007, The Journal of chemical physics.

[54]  Hans-Joachim Werner,et al.  Simplified CCSD(T)-F12 methods: theory and benchmarks. , 2009, The Journal of chemical physics.

[55]  Seiichiro Ten-no,et al.  Initiation of explicitly correlated Slater-type geminal theory , 2004 .

[56]  Frederick R Manby,et al.  General orbital invariant MP2-F12 theory. , 2007, The Journal of chemical physics.

[57]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[58]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[59]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[60]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T) , 2000 .

[61]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[62]  Hans-Joachim Werner,et al.  Calculation of smooth potential energy surfaces using local electron correlation methods. , 2006, The Journal of chemical physics.

[63]  Christian Ochsenfeld,et al.  Rigorous integral screening for electron correlation methods. , 2005, The Journal of chemical physics.

[64]  M. Duffey,et al.  Enantioselective total synthesis of borrelidin. , 2003, Journal of the American Chemical Society.

[65]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[66]  Edward F. Valeev Improving on the resolution of the identity in linear R12 ab initio theories , 2004 .

[67]  Peter Pulay,et al.  The local correlation treatment. II. Implementation and tests , 1988 .

[68]  J. Noga,et al.  Explicitly correlated R12 coupled cluster calculations for open shell systems , 2000 .

[69]  Christian Ochsenfeld,et al.  Multipole-based integral estimates for the rigorous description of distance dependence in two-electron integrals. , 2005, The Journal of chemical physics.

[70]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[71]  Edward F. Valeev,et al.  Analysis of the errors in explicitly correlated electronic structure theory. , 2005, Physical chemistry chemical physics : PCCP.