OTDM-based optical communications networks at 160 Gbit/s and beyond

Abstract The virtually unlimited bandwidth of optical fibers has caused a great increase in data transmission speed over the past decade and, hence, stimulated high-demand multimedia services. Nowadays, opto-electronic conversion is still required at each network node to process the incoming signal. However, when the single channel bit rate increases beyond electronic speed limit, optical time division multiplexing (OTDM) becomes a forced choice, and all-optical processing must be performed to extract the information from the incoming packet. In this paper the state of art, the advantages and drawbacks of the OTDM technology will be discussed in order to highlight its potentialities in different application scenarios for optical communications networks, and its perspectives in different temporal horizons. In detail, a recent experiment of a 160 Gbit/s OTDM system is presented. Furthermore, a photonic node architecture suitable for optical packet switching networks is proposed, and possible solutions for the implementation of all the required subsystems are presented and compared in order to optimize the node performance. In particular innovative schemes for optical add/drop multiplexer, optical logic gates, optical switches, and optical flip-flop are introduced with a particular emphasis on emerging nonlinear materials and enabling technologies.

[1]  G. Raybon,et al.  1-Tb/s (6 x 170.6 Gb/s) transmission over 2000-km NZDF using OTDM and RZ-DPSK format , 2003, IEEE Photonics Technology Letters.

[2]  H. de Waardt,et al.  All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  K. Stubkjaer,et al.  Semiconductor optical amplifier-based all-optical gates for high-speed optical processing , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  M. Scaffardi,et al.  Nonlinear optical loop mirrors: investigation solution and experimental validation for undesirable counterpropagating effects in all-optical signal processing , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  S. Mino,et al.  160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing , 2004, IEEE Photonics Technology Letters.

[6]  Kazuro Kikuchi,et al.  All-fiber 80-Gbit/s wavelength converter using 1-m-long Bismuth Oxide-based nonlinear optical fiber with a nonlinearity gamma of 1100 W-1km-1. , 2005, Optics express.

[7]  Takuo Tanemura,et al.  All-optical time-division add-drop multiplexer using optical fibre Kerr shutter , 2004 .

[8]  R. Ludwig,et al.  Gain-transparent SOA-switch for high-bitrate OTDM add/drop multiplexing , 1999 .

[9]  J. Cheng,et al.  High-speed, cascaded optical logic operations using programmable optical logic gate arrays , 1996, IEEE Photonics Technology Letters.

[10]  A. Bogoni,et al.  An optical memory cell based on erbium-doped fiber , 2005, Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components, 2005..

[11]  P. Ghelfi,et al.  Electrical equivalent model for an optical VCO in a PLL synchronization scheme for ultrashort optical pulse sources , 2006, Journal of Lightwave Technology.

[12]  Won-Taek Han,et al.  All-optical 2 x 2 switching with two independent Yb3+ -doped nonlinear optical fibers with a long-period fiber grating pair. , 2005, Applied optics.

[13]  Roberto Proietti,et al.  Regenerative and reconfigurable all-optical logic gates for ultra-fast applications , 2005 .

[14]  Hitoshi Kawaguchi,et al.  Pitchfork bifurcation polarisation bistability in vertical-cavity surface-emitting lasers , 1995 .

[15]  L. Brzozowski,et al.  All-optical analog-to-digital converters, hardlimiters, and logic gates , 2001 .

[16]  Peter A. Andrekson,et al.  OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber , 2003 .

[17]  M. Raburn,et al.  All-optical flip-flop multimode interference bistable laser diode , 2005, IEEE Photonics Technology Letters.

[18]  Bruce Schneier,et al.  Applied cryptography : protocols, algorithms, and source codein C , 1996 .

[19]  C. Porzi,et al.  Impedance-detuned high-contrast vertical cavity semiconductor switch , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[20]  Huug de Waardt,et al.  1x2 optical packet switch using all-optical header processing , 2001 .

[21]  K. Kikuchi,et al.  Wavelength conversion of 40-Gbit/s NRZ signal using four-wave mixing in 40-cm-long bismuth oxide based highly-nonlinear optical fiber , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[22]  S. Kanakaraju,et al.  All-optical AND/NAND logic gates using semiconductor microresonators , 2003, IEEE Photonics Technology Letters.

[23]  A. Bogoni,et al.  Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA , 2005, IEEE Photonics Technology Letters.

[24]  M. Jinno,et al.  Nonlinear Sagnac interferometer switch and its applications , 1992 .

[25]  N. Calabretta,et al.  Three-state all-optical memory based on coupled ring lasers , 2003, IEEE Photonics Technology Letters.

[26]  Paul R. Prucnal,et al.  Ultrafast soliton-trapping AND gate , 1992 .

[27]  Victor O. K. Li,et al.  A novel self-routing address scheme for all-optical packet-switched networks with arbitrary topologies , 2003 .

[28]  P. Ghelfi,et al.  All-optical ultra-fast 2/spl times/2 switch based on XPM-induced polarization rotation in highly nonlinear fiber , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[29]  Peter D. Drummond,et al.  Digital response in an all optical AND gate using parametric (χ (2) ) solitons , 2000, CLEO 2000.

[30]  K. Kikuchi,et al.  80 Gbit/s OTDM demultiplexer based on polarization rotation and XPM induced wavelength shift in a 1-m Bi/sub 2/O/sub 3/ nonlinear fiber , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[31]  E. Gini,et al.  All-optical regenerative OTDM add-drop multiplexing at 40 Gb/s using monolithic InP Mach-Zehnder interferometer , 2000, IEEE Photonics Technology Letters.

[32]  Mohammed N. Islam,et al.  Cascadability and functionality of all-optical low-birefringent nonlinear optical loop mirror: experimental demonstration , 1997 .

[33]  C. Schubert,et al.  160-Gb/s polarization insensitive all-optical demultiplexing using a gain-transparent ultrafast nonlinear interferometer (GT-UNI) , 2001, IEEE Photonics Technology Letters.

[34]  D. Bimberg,et al.  On ultrafast optical switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers , 2004, IEEE Photonics Technology Letters.

[35]  Colja Schubert,et al.  Error-free all-optical add-drop multiplexing at 160 Gbit/s , 2003 .

[36]  Antonella Bogoni,et al.  An Optical Flip-Flop Based on Erbium-Ytterbium Doped Fibre , 2006, 2006 European Conference on Optical Communications.

[37]  N. Calabretta,et al.  160 Gbit/s OTDM demultiplexer exploiting 1-meter-long bismuth oxide-based fiber , 2005, 2005 IEEE LEOS Annual Meeting Conference Proceedings.

[38]  Yaw-Dong Wu,et al.  All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity , 2005 .

[39]  K L Hall,et al.  100-Gbit/s bitwise logic. , 1998, Optics letters.

[40]  L. Poti,et al.  Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate , 2006, IEEE Photonics Technology Letters.

[41]  M. Scaffardi,et al.  All-optical regeneration and demultiplexing for 160-gb/s transmission systems using a NOLM-based three-stage scheme , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[42]  M. Karlsson,et al.  OTDM add-drop multiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber , 2005, Journal of Lightwave Technology.

[43]  Toshio Morioka,et al.  Ultrafast all-optical switching utilizing the optical Kerr effect in polarization-maintaining single-mode fibers , 1988, IEEE J. Sel. Areas Commun..

[44]  N. Wada,et al.  Agile and highly efficient wavelength conversion using highly nonlinear fiber for optical code-labeled packets , 2005, IEEE Photonics Technology Letters.

[45]  N. Calabretta,et al.  Ultrafast all-optical ADD-DROP multiplexer based on 1-m-long bismuth oxide-based highly nonlinear fiber , 2005, IEEE Photonics Technology Letters.

[46]  Paolo Ghelfi,et al.  Ultra-Fast Integrable 2×2 All-Optical Switch for Optical Packet Routing , 2006, 2006 European Conference on Optical Communications.

[47]  Bengt-Erik Olsson,et al.  Polarization-independent all-optical AND-gate using randomly birefringent fiber in a nonlinear optical loop mirror , 1998 .

[48]  K. Taira,et al.  Bismuth-based optical fiber with nonlinear coefficient of 1360 W'1km'1 , 2004 .

[49]  Paolo Ghelfi,et al.  320 Gbit/s all-optical regeneration for OTDM signals , 2004 .

[50]  P. Ghelfi,et al.  Ultra-fast clock recovery by all-optical PLL , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[51]  I. Glesk,et al.  Ultrafast all-optically controlled 2/spl times/2 crossbar switch , 1996, Conference Proceedings LEOS'96 9th Annual Meeting IEEE Lasers and Electro-Optics Society.

[52]  Alistair James Poustie,et al.  40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer , 2003 .

[53]  Colja Schubert,et al.  160 Gbit/s optical 3R-regenerator in a fiber transmission experiment , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[54]  Tarek S. El-Bawab,et al.  Optical packet switching in core networks: between vision and reality , 2002, IEEE Commun. Mag..

[55]  Jesper Mørk,et al.  Bidirectional four-wave mixing in semiconductor optical amplifiers: theory and experiment , 1999 .

[56]  H. Weber,et al.  160-Gb/s all-optical demultiplexing using a gain-transparent ultrafast-nonlinear interferometer (GT-UNI) , 2001, IEEE Photonics Technology Letters.

[57]  Hsu-Feng Chou,et al.  Compact 160-Gb/s add-drop multiplexer with a 40-Gb/s base rate using electroabsorption modulators , 2004, IEEE Photonics Technology Letters.