Linear finite fractional difference predictors for model predictive control

In this paper, a Grünwald-Letnikov-originated fractional-order difference (FD) is modeled with finite-length approximators called a finite fractional difference (FFD) and a normalized finite fractional difference (NFFD), whose time-domain structure enables their effective employment in the prediction process for linear discrete-time fractional-order state-space systems. The main, original contribution is the analytical derivation of a bank of long-range predictors for FFD/NFFD-based state-space systems. The predictors can constitute a basis for the synthesis of any linear model(-based) predictive control (MPC) strategy. We illustrate the usefulness of the predictors in the EHPC design, admitting open-loop stable nonminimum phase plants.

[1]  Miguel Romero,et al.  Tuning predictive controllers with optimization: Application to GPC and FGPC , 2011 .

[2]  Stefan Domek Fractional-Order Model Predictive Control with Small Set of Coincidence Points , 2014, RRNR.

[3]  Krzysztof J. Latawiec,et al.  Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for the asymptotic stability , 2013 .

[4]  J. Machado,et al.  Implementation of Discrete-Time Fractional- Order Controllers based on LS Approximations , 2006 .

[5]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[6]  Marko Bacic,et al.  Model predictive control , 2003 .

[7]  Wojciech P. Hunek,et al.  Finite approximations of a discrete-time fractional derivative , 2011, 2011 16th International Conference on Methods & Models in Automation & Robotics.

[8]  Guido Maione,et al.  A Digital, Noninteger Order, Differentiator using Laguerre Orthogonal Sequences , 2006 .

[9]  K. J. Latawiec,et al.  Ehmac - a New Simple Tool for Robust Linear Multivariable Control , 2000 .

[10]  S. Domek Switched State Model Predictive Control of Fractional‐Order Nonlinear Discrete‐Time Systems , 2013 .

[11]  Igor Podlubny,et al.  A New Discretization Method for Fractional Order Differentiators via Continued Fraction Expansion , 2003 .

[12]  Rafal Stanislawski,et al.  Modeling of open-loop stable linear systems using a combination of a finite fractional derivative and orthonormal basis functions , 2010, 2010 15th International Conference on Methods and Models in Automation and Robotics.

[13]  Djalil Boudjehem,et al.  A Fractional Model Predictive Control for Fractional Order Systems , 2012 .

[14]  R. Sargent,et al.  Theory and application of an extended horizon self‐tuning controller , 1985 .

[15]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[16]  Vicente Feliú Batlle,et al.  Fractional-Order PI Control of First Order Plants with Guaranteed Time Specifications , 2013, J. Appl. Math..

[17]  M. Łukaniszyn,et al.  A Comparative Analysis of Laguerre-Based Approximators to the Grünwald-Letnikov Fractional-Order Difference , 2015 .

[18]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[19]  Robin De Keyser,et al.  A comparative study of self-adaptive long-range predictive control methods , 1985, Autom..

[20]  Dominik Sierociuk,et al.  Infinite horizon state-feedback LQR controller for fractional systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[21]  Inés Tejado Balsera,et al.  Position and Velocity Control of a Servo by Using GPC of Arbitrary Real Order , 2010 .

[22]  Stephen P. Boyd,et al.  Receding Horizon Control , 2011, IEEE Control Systems.

[23]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[24]  Krzysztof J. Latawiec,et al.  Normalized finite fractional differences: Computational and accuracy breakthroughs , 2012, Int. J. Appl. Math. Comput. Sci..

[25]  W. Kwon,et al.  Receding Horizon Control: Model Predictive Control for State Models , 2005 .

[26]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[27]  Keri L. Ryan,et al.  Fractional Order Filter Enhanced LQR for Seismic Protection of Civil Structures , 2008 .

[28]  Ronald Soeterboek,et al.  Predictive Control: A Unified Approach , 1992 .

[29]  Miguel Romero,et al.  Fractional-Order Generalized Predictive Control: Formulation and some properties , 2010, 2010 11th International Conference on Control Automation Robotics & Vision.

[30]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[31]  Mekki Ksouri,et al.  Model Predictive Control of Fractional Order Systems. , 2014, Journal of computational and nonlinear dynamics.

[32]  Rafał Stanisławski New Laguerre Filter Approximators to the Grünwald-Letnikov Fractional Difference , 2012 .

[33]  Krzysztof J. Latawiec,et al.  The steady-state error issue in Laguerre-based modeling of the GL fractional difference , 2013, 2013 IEEE International Symposium on Industrial Electronics.

[34]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[35]  Krzysztof J. Latawiec,et al.  Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: New stability criterion for FD-based systems , 2013 .