Necessary Conditions for Free End-Time Problems

Our investigation of the properties of optimal strategies has, up till now, been confined to optimal control problems for which the underlying time interval [S,T] has been fixed.

[1]  Aram V. Arutyunov,et al.  FIRST-ORDER NECESSARY CONDITIONS IN THE PROBLEM OF OPTIMAL CONTROL OF A DIFFERENTIAL INCLUSION WITH PHASE CONSTRAINTS , 1994 .

[2]  Richard B. Vinter,et al.  A Feasible Directions Algorithm for Optimal Control Problems with State and Control Constraints: Convergence Analysis , 1998 .

[3]  H. Frankowska Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations , 1993 .

[4]  K. Malanowski,et al.  Sensitivity analysis for state constrained optimal control problems , 1998 .

[5]  J. Aubin Contingent Derivatives of Set-Valued Maps and Existence of Solutions to Nonlinear Inclusions and Differential Inclusions. , 1980 .

[6]  E. Polak,et al.  An exact penalty function algorithm for optimal control problems with control and terminal equality constraints, part 1 , 1980 .

[7]  Hubert Halkin,et al.  Implicit Functions and Optimization Problems without Continuous Differentiability of the Data , 1974 .

[8]  Hans Josef Pesch,et al.  Abort landing in the presence of windshear as a minimax optimal control problem, part 2: Multiple shooting and homotopy , 1991 .

[9]  P. Lions,et al.  Viscosity solutions of Hamilton-Jacobi equations , 1983 .

[10]  P. Wolenski,et al.  Proximal Analysis and the Minimal Time Function , 1998 .

[11]  F. Clarke Necessary conditions for nonsmooth problems in-optimal control and the calculus of variations , 1991 .

[12]  Hans Josef Pesch,et al.  Abort landing in the presence of windshear as a minimax optimal control problem, part 1: Necessary conditions , 1991 .

[13]  B. Mordukhovich Discrete Approximations and Refined Euler--Lagrange Conditions forNonconvex Differential Inclusions , 1995 .

[14]  L. Young Lectures on the Calculus of Variations and Optimal Control Theory , 1980 .

[15]  Mariano Giaquinta,et al.  Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 , 1984 .

[16]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[17]  Richard B. Vinter,et al.  Dynamic optimization problems with free-time and active state constraints , 1993 .

[18]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[19]  A. Kruger Properties of generalized differentials , 1985 .

[20]  F. Clarke A decoupling principle in the calculus of variations , 1993 .

[21]  B. Mordukhovich Generalized Differential Calculus for Nonsmooth and Set-Valued Mappings , 1994 .

[22]  John M. Ball,et al.  One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation , 1985 .

[23]  Mrdjan J. Jankovic,et al.  Constructive Nonlinear Control , 2011 .

[24]  George Leitmann,et al.  The Calculus of Variations and Optimal Control , 1982 .

[25]  I. Ekeland On the variational principle , 1974 .

[26]  Vera Zeidan Admissible directions and generalized coupled points for optimal control problems , 1996 .

[27]  Jan C. Willems,et al.  300 years of optimal control: From the brachystochrone to the maximum principle , 1997 .

[28]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[29]  Giuseppe Buttazzo,et al.  Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands , 1989 .

[30]  Harry Zheng,et al.  Necessary Conditions for Free End-Time, Measurably Time Dependent Optimal Control Problems with State Constraints , 2000 .

[31]  Philip D. Loewen A mean value theorem for Fre´chet subgradients , 1994 .

[32]  F. Clarke The applicability of the Hamilton-Jacobi verification technique , 1982 .

[33]  Richard B. Vinter,et al.  Invariance properties of time measurable differential inclusions and dynamic programming , 1996 .

[34]  F. Clarke The Maximum Principle under Minimal Hypotheses , 1976 .

[35]  Philip D. Loewen,et al.  Optimal Control of Unbounded Differential Inclusions , 1994, SIAM Journal on Control and Optimization.

[36]  Lucien W. Neustadt,et al.  A General Theory of Extremals , 1969, J. Comput. Syst. Sci..

[37]  E. Barron,et al.  Semicontinuous Viscosity Solutions For Hamilton–Jacobi Equations With Convex Hamiltonians , 1990 .

[38]  R. T. Rockafellar,et al.  The Euler and Weierstrass conditions for nonsmooth variational problems , 1996 .

[39]  H. Attouch Variational convergence for functions and operators , 1984 .

[40]  R. Vinter,et al.  A maximum principle for optimal processes with discontinuous trajectories , 1988 .

[41]  Hoang Duong Tuan,et al.  Controllability and extremality in nonconvex differential inclusions , 1995 .

[42]  J. Warga,et al.  Optimization and Controllability without Differentiability Assumptions , 1983 .

[43]  Richard B. Vinter,et al.  Regularity properties of solutions to the basic problem in the calculus of variations , 1985 .

[44]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[45]  Frank H. Clarke,et al.  Mean value inequalities , 1994 .

[46]  Philip D. Loewen,et al.  The value function in optimal control: Sensitivity, controllability, and time-optimality , 1986 .

[47]  F. Clarke Generalized gradients and applications , 1975 .

[48]  Philip D. Loewen,et al.  Differential inclusions with free time , 1988 .

[49]  Frank H. Clarke,et al.  Monotone Invariant Solutions to Differential Inclusions , 1977 .

[50]  L. Berkovitz Optimal Control Theory , 1974 .

[51]  David Q. Mayne,et al.  An exact penalty function algorithm for optimal control problems with control and terminal equality constraints, part 2 , 1980 .

[52]  On the conditions under which the euler equation or the maximum principle hold , 1984 .

[53]  A. Ioffe Approximate subdifferentials and applications. I. The finite-dimensional theory , 1984 .

[54]  Richard B. Vinter,et al.  A regularity theory for variational problems with higher order derivatives , 1990 .

[55]  A. Ioffe Proximal Analysis and Approximate Subdifferentials , 1990 .

[56]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[57]  R. Tyrrell Rockafellar,et al.  Proximal Subgradients, Marginal Values, and Augmented Lagrangians in Nonconvex Optimization , 1981, Math. Oper. Res..

[58]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[59]  Mitio Nagumo Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen , 1942 .

[60]  Georges Haddad,et al.  Monotone trajectories of differential inclusions and functional differential inclusions with memory , 1981 .

[61]  Richard B. Vinter,et al.  Regularity properties of optimal controls , 1990 .

[62]  Andrei I. Subbotin,et al.  Generalized solutions of first-order PDEs - the dynamical optimization perspective , 1994, Systems and control.

[63]  Jonathan M. Borwein,et al.  A survey of subdifferential calculus with applications , 2002 .

[64]  Philip D. Loewen,et al.  Pontryagin-type necessary conditions for differential inclusion problems , 1987 .

[65]  R. Vinter,et al.  Existence of Neighboring Feasible Trajectories: Applications to Dynamic Programming for State-Constrained Optimal Control Problems , 2000, CDC 2000.

[66]  Yu. S. Ledyaev,et al.  Qualitative properties of trajectories of control systems: A survey , 1995 .

[67]  Richard B. Vinter,et al.  Degenerate Optimal Control Problems with State Constraints , 2000, SIAM J. Control. Optim..

[68]  Richard B. Vinter,et al.  New results on the relationship between dynamic programming and the maximum principle , 1988, Math. Control. Signals Syst..

[69]  H. Frankowska The maximum principle for an optimal solution to a differential inclusion with end points constraints , 1987 .

[70]  A. D. Ioffe,et al.  Necessary Conditions in Nonsmooth Optimization , 1984, Math. Oper. Res..

[71]  Sergey Aseev A method of smooth approximation in the theory of necessary optimality conditions for differential inclusions , 1997 .

[72]  Sergei M. Aseev,et al.  Investigation of the Degeneracy Phenomenon of the Maximum Principle for Optimal Control Problems with State Constraints , 1997 .

[73]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[74]  Harry Zheng,et al.  The Extended Euler--Lagrange Condition for Nonconvex Variational Problems , 1997 .

[75]  Frank H. Clarke,et al.  A New Approach to Lagrange Multipliers , 1976, Math. Oper. Res..

[76]  B. Mordukhovich Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions , 1993 .

[77]  F. Clarke,et al.  Applications of optimal multiprocesses , 1989 .

[78]  R. Bellman Dynamic programming. , 1957, Science.

[79]  B. Kaśkosz,et al.  A maximum principle for generalized control systems , 1985 .

[80]  J. P. Lasalle,et al.  functional analysis and time Optimal Control , 1969 .

[81]  Richard B. Vinter,et al.  Optimal multiprocesses , 1989 .

[82]  W. Hager Lipschitz Continuity for Constrained Processes , 1979 .

[83]  Daniel H. Wagner Survey of Measurable Selection Theorems , 1977 .

[84]  Frank H. Clarke,et al.  The relationship between the maximum principle and dynamic programming , 1987 .

[85]  R. Rockafellar,et al.  Generalized Hamiltonian equations for convex problems of Lagrange. , 1970 .

[86]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .

[87]  Richard B. Vinter,et al.  Local Optimality Conditions and Lipschitzian Solutions to the Hamilton–Jacobi Equation , 1983 .

[88]  R. Vinter,et al.  When Is the Maximum Principle for State Constrained Problems Nondegenerate , 1994 .

[89]  Stanley H. Benton,et al.  The Hamilton-Jacobi Equation: A Global Approach , 2012 .

[90]  F. Clarke,et al.  Optimal solutions to differential inclusions , 1976 .

[91]  Jerzy Zabczyk,et al.  Mathematical control theory - an introduction , 1992, Systems & Control: Foundations & Applications.

[92]  R. Rockafellar Existence theorems for general control problems of Bolza and Lagrange , 1975 .

[93]  Existence and regularity in the small in the calculus of variations , 1985 .

[94]  G. N. Silva,et al.  Necessary Conditions for Optimal Impulsive Control Problems , 1997 .

[95]  H. Halkin On the necessary condition for optimal control of nonlinear systems , 1964 .

[96]  J. Warga Optimal control of differential and functional equations , 1972 .

[97]  Héctor J. Sussmann,et al.  Geometry and optimal control , 1998 .

[98]  R. Rockafellar Existence and duality theorems for convex problems of Bolza , 1971 .

[99]  J. Warga,et al.  Fat homeomorphisms and unbounded derivate containers , 1981 .

[100]  W. Hager,et al.  A new approach to Lipschitz continuity in state constrained optimal control 1 1 This research was su , 1998 .

[101]  W. Fleming,et al.  Deterministic and Stochastic Optimal Control , 1975 .

[102]  Philip Loewen The geometry of nonsmooth analysis , 1993 .

[103]  Halina Frankowska,et al.  Measurable Viability Theorems and the Hamilton-Jacobi-Bellman Equation , 1995 .

[104]  I. Ekeland Nonconvex minimization problems , 1979 .

[105]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[106]  Qiji J. Zhu Necessary Optimality Conditions for Nonconvex Differential Inclusions with Endpoint Constraints , 1996 .

[107]  Richard B. Vinter,et al.  A maximum principle for nonsmooth optimal-control problems with state constraints , 1982 .

[108]  Yu. S. Ledyaev,et al.  Dualization of the Euler and Hamiltonian inclusions , 2001 .

[109]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[110]  R. Pytlak,et al.  Runge–Kutta Based Procedure for the Optimal Control of Differential-Algebraic Equations , 1998 .

[111]  Alexander D. Ioffe A Lagrange multiplier rule with small convex-valued subdifferentials for nonsmooth problems of mathematical programming involving equality and nonfunctional constraints , 1993, Math. Program..

[112]  J. Troutman Variational Calculus with Elementary Convexity , 1983 .

[113]  J. Borwein,et al.  A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions , 1987 .

[114]  H. Soner Optimal control with state-space constraint I , 1986 .

[115]  A. Balakrishnan Applied Functional Analysis , 1976 .

[116]  Richard B. Vinter,et al.  Hamilton-Jacobi theory for optimal control problems with data measurable in time , 1990 .

[117]  R. Rockafellar Equivalent Subgradient Versions of Hamiltonian and Euler--Llagrange Equations in Variational Analysis , 1996 .

[118]  A. Ioffe Euler-Lagrange and Hamiltonian formalisms in dynamic optimization , 1997 .

[119]  Perturbed optimal control problems , 1986 .

[120]  A.Ya. Dubovitskii,et al.  Extremum problems in the presence of restrictions , 1965 .

[121]  Richard B. Vinter,et al.  Relaxation procedures for time delay systems , 1991 .

[122]  R. Vinter Convex duality and nonlinear optimal control , 1993 .

[123]  Frank H. Clarke,et al.  Mean value inequalities in Hilbert space , 1994 .

[124]  H. Attouch,et al.  Variational Convergence for Functions and Operators (Applicable Mathematics Series) , 1984 .

[125]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[126]  Dariusz Zagrodny,et al.  Approximate mean value theorem for upper subderivatives , 1988 .

[127]  Philip D. Loewen,et al.  New Necessary Conditions for the Generalized Problem of Bolza , 1996 .

[128]  Leonida Tonelli,et al.  Sur une méthode directe du calcul des variations , 1915 .