Analogy-based volume exploration using ellipsoidal Gaussian transfer functions

Much effort has been made on multidimensional transfer function, which is designed for effective exploration of 3D scalar datasets. But now, existing solution for designing transfer function typically focuses on exploring volume independently without any prior knowledge. It remains, however, a big challenge for us to reuse the explored knowledge, experience and results in scientific visualization. In this paper, we present a novel technique that employs an analogy-based approach. It aims to facilitate automatic volume exploration for multiple datasets which may share common context or features. The kernel of our approach is using the template scheme. With the introduction of the Gaussian Mixture Model, we adopt this new scheme to modeling, designing and transferring—they are processed in the data histogram space. Then, we integrate this scheme into two-dimensional transfer function design. The result shows that the interesting features can easily be captured with little user workload after adopting our approach.Graphical Abstract

[1]  Han-Wei Shen,et al.  Visualization and Exploration of Temporal Trend Relationships in Multivariate Time-Varying Data , 2009, IEEE Transactions on Visualization and Computer Graphics.

[2]  Cüneyt Güzelis,et al.  Semiautomatic Transfer Function Initialization for Abdominal Visualization Using Self-Generating Hierarchical Radial Basis Function Networks , 2009, IEEE Transactions on Visualization and Computer Graphics.

[3]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[4]  D. Gentner,et al.  The analogical mind : perspectives from cognitive science , 2001 .

[5]  Patrick Henry Winston,et al.  Learning and reasoning by analogy , 1980, CACM.

[6]  Cláudio T. Silva,et al.  Querying and Creating Visualizations by Analogy , 2007, IEEE Transactions on Visualization and Computer Graphics.

[7]  Wei Chen,et al.  Volume exploration using ellipsoidal Gaussian transfer functions , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[8]  Zhengyou Zhang,et al.  Determining the Epipolar Geometry and its Uncertainty: A Review , 1998, International Journal of Computer Vision.

[9]  Kwan-Liu Ma,et al.  A cluster-space visual interface for arbitrary dimensional classification of volume data , 2004, VISSYM'04.

[10]  David S. Ebert,et al.  Structuring Feature Space: A Non-Parametric Method for Volumetric Transfer Function Generation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[11]  Kwan-Liu Ma,et al.  Simultaneous Classification of Time-Varying Volume Data Based on the Time Histogram , 2006, EuroVis.

[12]  Daniel Cohen-Or,et al.  Fragment-based image completion , 2003, ACM Trans. Graph..

[13]  David Salesin,et al.  Image Analogies , 2001, SIGGRAPH.

[14]  Klaus Mueller,et al.  Color Design for Illustrative Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[15]  Hiroshi Takemiya,et al.  Algebraic design of multi-dimensional transfer function using transfer function synthesizer , 2017, J. Vis..

[16]  Carl-Fredrik Westin,et al.  Tissue Classification Based on 3D Local Intensity Structures for Volume Rendering , 2000, IEEE Trans. Vis. Comput. Graph..

[17]  Jianlong Zhou,et al.  Automatic Transfer Function Generation Using Contour Tree Controlled Residue Flow Model and Color Harmonics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[18]  Yuriko Takeshima,et al.  Automating transfer function design for comprehensible volume rendering based on 3D field topology analysis , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[19]  Joe Michael Kniss,et al.  Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets , 2001, Proceedings Visualization, 2001. VIS '01..

[20]  Kwan-Liu Ma,et al.  An intelligent system approach to higher-dimensional classification of volume data , 2005, IEEE Transactions on Visualization and Computer Graphics.

[21]  Daniel Cohen-Or,et al.  Image Appearance Exploration by Model‐Based Navigation , 2009, Comput. Graph. Forum.

[22]  Nikolas P. Galatsanos,et al.  An Analytic Distance Metric for Gaussian Mixture Models with Application in Image Retrieval , 2005, ICANN.

[23]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[24]  Kwan-Liu Ma,et al.  Visualizing time-varying volume data , 2003, Comput. Sci. Eng..

[25]  Kwan-Liu Ma,et al.  The Occlusion Spectrum for Volume Classification and Visualization , 2009, IEEE Transactions on Visualization and Computer Graphics.

[26]  G. Kindlmann,et al.  Semi-automatic generation of transfer functions for direct volume rendering , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[27]  Kwan-Liu Ma,et al.  Size-based Transfer Functions: A New Volume Exploration Technique , 2008, IEEE Transactions on Visualization and Computer Graphics.

[28]  Kwan-Liu Ma,et al.  Intelligent Feature Extraction and Tracking for Visualizing Large-Scale 4D Flow Simulations , 2005, ACM/IEEE SC 2005 Conference (SC'05).

[29]  William E. Lorensen,et al.  The Transfer Function Bake-Off , 2001, IEEE Computer Graphics and Applications.

[30]  Joe Michael Kniss,et al.  Gaussian transfer functions for multi-field volume visualization , 2003, IEEE Visualization, 2003. VIS 2003..

[31]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[32]  T. J. Jankun-Kelly,et al.  A Study of Transfer Function Generation for Time-Varying Volume Data , 2001, VG.

[33]  Han-Wei Shen,et al.  Multiscale Time Activity Data Exploration via Temporal Clustering Visualization Spreadsheet , 2009, IEEE Transactions on Visualization and Computer Graphics.

[34]  Han-Wei Shen,et al.  Semi‐Automatic Time‐Series Transfer Functions via Temporal Clustering and Sequencing , 2009, Comput. Graph. Forum.