Preemptive Parallel Task Scheduling in O(n)+Poly(m) Time

We study the problem of scheduling a set of n independent parallel tasks on m processors, where in addition to the processing time there is a size associated with each task indicating that the task can be processed on any subset of processors of the given size. Based on a linear programming formulation, we propose an algorithm for computing a preemptive schedule with minimum makespan, and show that the running time of the algorithm depends polynomially on m and only linearly on n. Thus for any fixed m, an optimal preemptive schedule can be computed in O(n) time. We also present extensions of this approach to other (more general) scheduling problems with malleable tasks, release times, due dates and maximum lateness minimization.

[1]  Jianer Chen,et al.  A polynomial time approximation scheme for general multiprocessor job scheduling (extended abstract) , 1999, STOC '99.

[2]  Jianer Chen,et al.  A Polynomial Time Approximation Scheme for General Multiprocessor Job Scheduling , 2001, SIAM J. Comput..

[3]  Uriel Feige,et al.  Zero knowledge and the chromatic number , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[4]  Maciej Drozdowski On the complexity of multiprocessor task scheduling , 1995 .

[5]  Philip S. Yu,et al.  Approximate algorithms scheduling parallelizable tasks , 1992, SPAA '92.

[6]  Jacek Blazewicz,et al.  Deadline Scheduling of Multiprocessor Tasks , 1996, Discret. Appl. Math..

[7]  Claire Mathieu,et al.  Approximate strip packing , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[8]  Günter Schmidt,et al.  Scheduling on semi-identical processors , 1984, Z. Oper. Research.

[9]  Klaus Jansen,et al.  Preemptive Scheduling on Dedicated Processors: Applications of Fractional Graph Coloring , 2000, MFCS.

[10]  Uriel Feige,et al.  Zero Knowledge and the Chromatic Number , 1998, J. Comput. Syst. Sci..

[11]  Günter Schmidt,et al.  Scheduling with limited machine availability , 2000, Eur. J. Oper. Res..

[12]  Maciej Drozdowski,et al.  Scheduling multiprocessor tasks -- An overview , 1996 .

[13]  Lucio Bianco,et al.  Scheduling multiprocessor tasks on a dynamic configuration of dedicated processors , 1995, Ann. Oper. Res..

[14]  Uwe Schwiegelshohn Preemptive Weighted Completion Time Scheduling of Parallel Jobs , 1996, ESA.

[15]  Jacek Blazewicz,et al.  Scheduling Multiprocessor Tasks to Minimize Schedule Length , 1986, IEEE Transactions on Computers.

[16]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[17]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1993, STOC.

[18]  Prasoon Tiwari,et al.  Scheduling malleable and nonmalleable parallel tasks , 1994, SODA '94.

[19]  Evripidis Bampis,et al.  Scheduling Independent Multiprocessor Tasks , 1997, ESA.

[20]  Han Hoogeveen,et al.  Complexity of Scheduling Multiprocessor Tasks with Prespecified Processor Allocations , 1994, Discret. Appl. Math..

[21]  A. Steinberg,et al.  A Strip-Packing Algorithm with Absolute Performance Bound 2 , 1997, SIAM J. Comput..

[22]  Anja Feldmann,et al.  Dynamic scheduling on parallel machines , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[23]  Klaus Jansen,et al.  Linear-Time Approximation Schemes for Scheduling Malleable Parallel Tasks , 1999, SODA '99.

[24]  Joseph Y.-T. Leung,et al.  Complexity of Scheduling Parallel Task Systems , 1989, SIAM J. Discret. Math..