Three-dimensional packing structure and electronic properties of biaxially oriented poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene) films.

We use a systematic approach that combines experimental X-ray diffraction (XRD) and computational modeling based on molecular mechanics and two-dimensional XRD simulations to develop a detailed model of the molecular-scale packing structure of poly(2,5-bis (3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene) (PBTTT-C(14)) films. Both uniaxially and biaxially aligned films are used in this comparison and lead to an improved understanding of the molecular-scale orientation and crystal structure. We then examine how individual polymer components (i.e., conjugated backbone and alkyl side chains) contribute to the complete diffraction pattern, and how modest changes to a particular component orientation (e.g., backbone or side-chain tilt) influence the diffraction pattern. The effects on the polymer crystal structure of varying the alkyl side-chain length from C(12) to C(14) and C(16) are also studied. The accurate determination of the three-dimensional polymer structure allows us to examine the PBTTT electronic band structure and intermolecular electronic couplings (transfer integrals) as a function of alkyl side-chain length. This combination of theoretical and experimental techniques proves to be an important tool to help establish the relationship between the structural and electronic properties of polymer thin films.

[1]  R. J. Kline,et al.  Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films , 2011 .

[2]  M. Toney,et al.  Drastic Control of Texture in a High Performance n-Type Polymeric Semiconductor and Implications for Charge Transport , 2011 .

[3]  T. Xu,et al.  When Function Follows Form: Effects of Donor Copolymer Side Chains on Film Morphology and BHJ Solar Cell Performance , 2010, Advanced materials.

[4]  R. J. Kline,et al.  Structural Origin of Gap States in Semicrystalline Polymers and the Implications for Charge Transport , 2010, 1012.2240.

[5]  Alberto Salleo,et al.  Unconventional Face‐On Texture and Exceptional In‐Plane Order of a High Mobility n‐Type Polymer , 2010, Advanced materials.

[6]  Alberto Salleo,et al.  Microstructural Characterization and Charge Transport in Thin Films of Conjugated Polymers , 2010, Advanced materials.

[7]  Vivek Subramanian,et al.  Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[8]  R. Janssen,et al.  Biaxially oriented CdSe nanorods. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[9]  Christoph J. Brabec,et al.  Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells , 2009 .

[10]  David S. Germack,et al.  Controlling the orientation of terraced nanoscale "ribbons" of a poly(thiophene) semiconductor. , 2009, ACS nano.

[11]  R. J. Kline,et al.  Semiconducting Thienothiophene Copolymers: Design, Synthesis, Morphology, and Performance in Thin‐Film Organic Transistors , 2009 .

[12]  Maxim Shkunov,et al.  Solid‐State Supramolecular Organization of Polythiophene Chains Containing Thienothiophene Units , 2009 .

[13]  D. Kumaki,et al.  Surface-energy-dependent field-effect mobilities up to 1 cm2/V s for polymer thin-film transistor , 2009 .

[14]  H. Chan,et al.  Solvent effects and multiple aggregate states in high-mobility organic field-effect transistors based on poly(bithiophene-alt-thienothiophene) , 2008 .

[15]  M. Chabinyc X‐ray Scattering from Films of Semiconducting Polymers , 2008 .

[16]  Martijn Lenes,et al.  Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years) , 2008 .

[17]  Andrew J. Moad,et al.  Molecular Basis of Mesophase Ordering in a Thiophene-Based Copolymer , 2008 .

[18]  R. J. Kline,et al.  Conjugation Effects on Carrier Mobilities of Polythiophenes Probed by Time-Resolved Terahertz Spectroscopy , 2008 .

[19]  O. Bunk,et al.  Simulating X-ray diffraction of textured films , 2008 .

[20]  M. McGehee,et al.  Organic bulk heterojunction solar cells using poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2,-b]thiophene) , 2008 .

[21]  Youngsuk Jung,et al.  The Effect of Interfacial Roughness on the Thin Film Morphology and Charge Transport of High‐Performance Polythiophenes , 2008 .

[22]  M. Shkunov,et al.  Organic field-effect transistors of poly(2,5-bis(3-dodecylthiophen-2-yl)thieno[2,3-b]thiophene) deposited on five different silane self-assembled monolayers. , 2008, Chemical communications.

[23]  Martin Heeney,et al.  Undoped polythiophene field-effect transistors with mobility of 1cm2V−1s−1 , 2007 .

[24]  J. Northrup,et al.  Atomic and electronic structure of polymer organic semiconductors: P3HT, PQT, and PBTTT , 2007 .

[25]  Eric K. Lin,et al.  Critical Role of Side-Chain Attachment Density on the Order and Device Performance of Polythiophenes , 2007 .

[26]  M. Shkunov,et al.  Electronic Structure and Charge-Transport Properties of Polythiophene Chains Containing Thienothiophene Units: A Joint Experimental and Theoretical Study , 2007 .

[27]  Jean-Luc Brédas,et al.  Charge transport in organic semiconductors. , 2007, Chemical reviews.

[28]  R. J. Kline,et al.  High Carrier Mobility Polythiophene Thin Films: Structure Determination by Experiment and Theory† , 2007 .

[29]  R. J. Kline,et al.  X-ray scattering study of thin films of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). , 2007, Journal of the American Chemical Society.

[30]  Edward F. Valeev,et al.  Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. , 2006, Journal of the American Chemical Society.

[31]  Maxim Shkunov,et al.  Liquid-crystalline semiconducting polymers with high charge-carrier mobility , 2006, Nature materials.

[32]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[33]  Henning Sirringhaus,et al.  Device Physics of Solution‐Processed Organic Field‐Effect Transistors , 2005 .

[34]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[35]  Abhishek P. Kulkarni,et al.  Electron Transport Materials for Organic Light-Emitting Diodes , 2004 .

[36]  David Beljonne,et al.  Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. , 2004, Chemical reviews.

[37]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[38]  Lin H. Yang,et al.  Structural and electronic properties of pentacene molecule and molecular pentacene solid , 2002, cond-mat/0211420.

[39]  Massimo Malagoli,et al.  The vibrational reorganization energy in pentacene: molecular influences on charge transport. , 2002, Journal of the American Chemical Society.

[40]  J. P. Calbert,et al.  Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  D. Smilgies Geometry-independent intensity correction factors for grazing-incidence diffraction , 2002 .

[42]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[43]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[44]  Mark A. Ratner,et al.  6-31G * basis set for atoms K through Zn , 1998 .

[45]  H. Sirringhaus,et al.  Integrated optoelectronic devices based on conjugated polymers , 1998, Science.

[46]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry. Theory and experiment , 1993 .

[47]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[48]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[49]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[50]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[51]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[52]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[53]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[54]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[55]  Pengyu Y. Ren,et al.  The COMPASS force field: parameterization and validation for phosphazenes , 1998 .

[56]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .