A New Projection Method for the Zero Froude Number Shallow Water Equations
暂无分享,去创建一个
[1] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[2] R. Klein,et al. Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 2000 .
[3] Philip M. Gresho,et al. On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .
[4] Wilhelm Schneider,et al. Mathematische Methoden der Strömungsmechanik , 1978 .
[5] Dietrich Braess,et al. Finite Elemente - Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie , 1992 .
[6] M. F.,et al. Bibliography , 1985, Experimental Gerontology.
[7] Jean E. Roberts,et al. Mixed and hybrid methods , 1991 .
[8] D. Arnold,et al. Discontinuous Galerkin Methods for Elliptic Problems , 2000 .
[9] Carlo L. Bottasso,et al. Discontinuous dual-primal mixed finite elements for elliptic problems , 2001 .
[10] Claudio Canuto,et al. Generalized Inf-Sup Conditions for Chebyshev Spectral Approximation of the Stokes Problem , 1988 .
[11] J. Cole,et al. Multiple Scale and Singular Perturbation Methods , 1996 .
[12] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[13] John B. Bell,et al. A Numerical Method for the Incompressible Navier-Stokes Equations Based on an Approximate Projection , 1996, SIAM J. Sci. Comput..
[14] F. Harlow,et al. Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .
[15] G. I. Barenblatt. Scaling: Self-similarity and intermediate asymptotics , 1996 .
[16] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[17] P. Colella,et al. A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .
[18] R. Nicolaides. Existence, Uniqueness and Approximation for Generalized Saddle Point Problems , 1982 .
[19] I. Babuska. Error-bounds for finite element method , 1971 .
[20] Endre Süli. Convergence of finite volume schemes for Poisson's equation on nonuniform meshes , 1991 .
[21] A. Majda. Introduction to PDEs and Waves in Atmosphere and Ocean , 2003 .
[22] Frank Biermann,et al. Global Environmental Change and the Nation State , 2004, Global Environmental Politics.
[23] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[24] John B. Bell,et al. Approximate Projection Methods: Part I. Inviscid Analysis , 2000, SIAM J. Sci. Comput..
[25] R. Klein. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .
[26] J. Holton. Geophysical fluid dynamics. , 1983, Science.
[27] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[28] M. Minion. A Projection Method for Locally Refined Grids , 1996 .
[29] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[30] O. Knio,et al. A multiscale pressure splitting of the shallow-water equations , 2001 .
[31] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[32] Stanley Osher,et al. Convergence of Generalized MUSCL Schemes , 1985 .
[33] M. Fortin,et al. E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .
[34] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[35] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[36] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[37] Bernardo Cockburn,et al. Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .
[38] C. Munz,et al. The extension of incompressible flow solvers to the weakly compressible regime , 2003 .
[39] C. Schulz-Rinne,et al. The Riemann problem for two-dimensional gas dynamics and new limiters for high-order schemes , 1993 .