Well–Poised Macdonald Functions Wλ and Jackson Coefficients ωλ On BCn

The very well–poised elliptic Macdonald functionsWλ/μ in n independent variables are defined and their properties are investigated. The Wλ/μ are generalized by introducing an extra parameter to the elliptic Jackson coefficients ωλ/μ and their properties are studied. BCn multivariable Jackson sums in terms of both Wλ and ωλ functions are proved.

[1]  S. Warnaar,et al.  Summation and transformation formulas for elliptic hypergeometric series , 2000, math/0001006.

[2]  G. M. Lilly THE At AND Q BAILEY TRANSFORM AND LEMMA , 1992 .

[3]  $BC_n$-symmetric abelian functions , 2004, math/0402113.

[4]  BC-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials , 1996, q-alg/9611011.

[5]  Difference equations and symmetric polynomials defined by their zeros , 1996 .

[6]  George E. Andrews,et al.  q-series : their development and application in analysis, number theory, combinatorics, physics, and computer algebra , 1986 .

[7]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[8]  Friedrich Knop,et al.  Symmetric and non-symmetric quantum Capelli polynomials , 1996, q-alg/9603028.

[9]  S. Ole Warnaar,et al.  50 Years of Bailey’s Lemma , 2009, 0910.2062.

[10]  Vyacheslav P. Spiridonov,et al.  An elliptic incarnation of the Bailey chain , 2002 .

[11]  Andrei Okounkov A characterization of interpolation Macdonald polynomials , 1997 .

[12]  Vladimir Turaev,et al.  Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions , 1997 .

[13]  Kristina C. Garrett,et al.  Variants of the Rogers-Ramanujan Identities , 1999 .

[14]  Andrew V. Sills,et al.  On identities of the Rogers-Ramanujan type , 2006, 1811.11285.

[15]  T. Koornwinder,et al.  BASIC HYPERGEOMETRIC SERIES (Encyclopedia of Mathematics and its Applications) , 1991 .

[16]  W. N. Bailey Some Identities in Combinatory Analysis , 1946 .

[17]  James D. Louck,et al.  A new class of symmetric polynomials defined in terms of tableaux , 1989 .

[18]  Ian P. Goulden,et al.  Shift Operators and Factorial Symmetric Functions , 1995, J. Comb. Theory, Ser. A.

[19]  Jeremy Lovejoy A Bailey lattice , 2003 .

[20]  A. Okounkov On Newton Interpolation of Symmetric Functions , 1998 .

[21]  Siddhartha Sahi,et al.  Interpolation, Integrality, and a Generalization of Macdonald's Polynomials , 1996 .

[22]  Grigori Olshanski,et al.  Shifted Schur Functions , 1996 .

[23]  A. Schilling,et al.  An A$_2$ Bailey lemma and Rogers--Ramanujan-type identities , 1998, math/9807125.

[24]  Hjalmar Rosengren Elliptic hypergeometric series on root systems , 2002 .

[25]  M. Schlosser BASIC HYPERGEOMETRIC SERIES , 2007 .