Numerical analysis of device performance of metamorphic In/sub y/Al/sub 1-y/As/In/sub x/Ga/sub 1-x/As (0.3/spl les/x/spl les/0.6) HEMTs on GaAs substrate

A numerical model describing the influence of InAs mole fraction on metamorphic HEMT structures (MM-HEMT) is proposed. The material properties are calculated using the Monte Carlo method, while the charge control law is calculated using a self-consistent solution of Poisson's and Schrodinger's equations. The modeling of the dc, ac, noise and high frequency performance of a device with 0.25-/spl mu/m gate length is performed using the quasi-two-dimensional (Q2D) approach. This analysis shows that an InAs mole fraction of about 0.40 is an optimum composition for manufacturing high gain, low noise amplifiers. In this range of composition, the performance of MM-HEMT structures is similar to that obtained for lattice-matched HEMTs on InP substrates.

[1]  F. J. Rosenbaum,et al.  A Large-Signal Model for the GaAs MESFET , 1981 .

[2]  O. Madelung Semiconductors : group IV elements and III-V compounds , 1991 .

[3]  Hermann A. Haus,et al.  Signal and Noise Properties of Gallium Arsenide Microwave Field-Effect-Transistors , 1975 .

[4]  Francois Danneville,et al.  Helena: A friendly software for calculating the DC, AC, and noise performance of HEMTs , 1993 .

[5]  E. Constant,et al.  Modeling of a submicrometer gate field‐effect transistor including effects of nonstationary electron dynamics , 1980 .

[6]  Christopher M. Snowden,et al.  Quasi-two-dimensional MESFET simulations for CAD , 1989 .

[7]  P. M. Smith Status of InP HEMT technology for microwave receiver applications , 1996, IMS 1996.

[8]  E. Garmire,et al.  An empirical rule for band offsets between III‐V alloy compounds , 1993 .

[9]  William Shockley,et al.  The Impedance Field Method of Noise Calculation in Active Semiconductor Devices , 1966 .

[10]  M. Reiser,et al.  A two-dimensional numerical FET model for DC, AC, and large-signal analysis , 1973 .

[11]  G. Salmer,et al.  MODFET 2-D hydrodynamic energy modeling: optimization of subquarter-micron-gate structures , 1990 .

[12]  Peter Russer,et al.  An efficient method for computer aided noise analysis of linear amplifier networks , 1976 .

[13]  Martin A. Green,et al.  Application of the small-signal transmission line equivalent circuit model to the a.c., d.c. and transient analysis of semiconductor devices , 1974 .

[14]  Christopher M. Snowden,et al.  A quasi-two-dimensional HEMT model for microwave CAD applications , 1995 .

[15]  G. Haddad,et al.  Quasi-two-dimensional modeling of GaAs MESFET's , 1987, IEEE Transactions on Electron Devices.

[16]  J. Graffeuil,et al.  Semiempirical expression for direct transconductance and equivalent saturated velocity in short-gate-length MESFETs , 1982 .

[17]  W. Heinrich,et al.  High-frequency FET noise performance: a new approach , 1989 .

[18]  B. Vinter Subbands and charge control in a two‐dimensional electron gas field‐effect transistor , 1984 .

[19]  Richard Lai,et al.  A monolithic W-band three-stage LNA using 0.1 mu m InAlAs/InGaAs/InP HEMT technology , 1993, 1993 IEEE MTT-S International Microwave Symposium Digest.

[20]  Michael S. Shur,et al.  Monte Carlo simulation of short channel heterostructure field-effect transistors , 1991 .

[21]  Alain Cappy,et al.  Electron transport properties of strained InxGa1−xAs , 1990 .

[22]  Frank Stern,et al.  Electron energy levels in GaAs- Ga 1 − x Al x As heterojunctions , 1984 .

[23]  Kevin F. Brennan,et al.  Theoretical analysis of an Al/sub 0.15/Ga/sub 0.85/As/In/sub 0.15/Ga/sub 0.85/As pseudomorphic HEMT using an ensemble Monte Carlo simulation , 1989 .

[24]  K. Brennan Theoretical study of multiquantum well avalanche photodiodes made from the GaInAs/AlInAs material system , 1986, IEEE Transactions on Electron Devices.

[25]  Alain Cappy,et al.  Metamorphic In0.3Ga0.7As/In0.29Al0.71As layer on GaAs: A new structure for high performance high electron mobility transistor realization , 1992 .

[26]  Giovanni Ghione,et al.  Physics-based electron device modelling and computer-aided MMIC design , 1992 .

[27]  Dimitris Pavlidis,et al.  A D-band monolithic fundamental oscillator using InP-based HEMT's , 1993 .

[28]  Alain Cappy,et al.  Microwave performance of 0.4 mu m gate metamorphic In/sub 0.29/Al/sub 0.71/As/In/sub 0.3/Ga/sub 0.7/As HEMT on GaAs substrate , 1993 .

[29]  Kaoru Inoue,et al.  High-quality InxGa1−xAs/InAlAs modulation-doped heterostructures grown lattice-mismatched on GaAs substrates , 1991 .

[30]  C. Snowden,et al.  Two-dimensional hot-electron models for short-gate-length GaAs MESFET's , 1987, IEEE Transactions on Electron Devices.

[31]  D.-W. Tu,et al.  High-performance, 0.1 μm InAlAs/InGaAs high electron mobility transistors on GaAs , 1996, IEEE Electron Device Letters.

[32]  J. Harris,et al.  Characterization of surface-undoped In/sub 0.52/Al/sub 0.48/As/In/sub 0.53/Ga/sub 0.47/As/InP high electron mobility transistors , 1990 .

[33]  Mutsuhiro Mori,et al.  First high performance InAlAs/InGaAs HEMTs on GaAs exceeding that on InP , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.

[34]  Henri Happy,et al.  Modelling of pseudomorphic AlGaAs/GaInAs/AlGaAs layers using selfconsistent approach , 1990, Eur. Trans. Telecommun..

[35]  S. Tiwari Threshold and sheet concentration sensitivity of high electron mobility transistors , 1984, IEEE Transactions on Electron Devices.

[36]  J. Thobel,et al.  Monte Carlo modeling of high‐field transport in III‐V heterostructures , 1993 .