Constraining inputs to realistic kilonova simulations through comparison to observed r-process abundances

Kilonovae, one source of electromagnetic emission associated with neutron star mergers, are pow-ered by the decay of radioactive isotopes in the neutron-rich merger ejecta. Models for kilonova emission consistent with available modeling and the electromagnetic counterpart to GW170817 also predict characteristic abundance patterns, determined by the relative balance of different types of material in the outflow. Assuming the observed source is prototypical, this inferred abundance pattern in turn must match r -process abundances deduced by other means, such as what is observed in the solar system. We report on analysis comparing the input mass-weighted elemental compositions adopted in our radiative transfer simulations to the mass fractions of elements in the Sun. We char-acterise the extent to which our parameter inference results depend on our assumed composition for the dynamical and wind ejecta and examine how the new results compare to previous work. We find that a mass ratio of M w /M d = 2.81 reproduces the observed AT2017gfo kilonova light curves while also producing the abundance of neutron-capture elements in the solar system.

[1]  M. Shibata,et al.  Comprehensive study on the mass ejection and nucleosynthesis in the binary neutron star mergers leaving short-lived massive neutron stars , 2022, 2205.05557.

[2]  Zoheyr Doctor,et al.  KilonovaNet: Surrogate models of kilonova spectra with conditional variational autoencoders , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  M. Mumpower,et al.  The need for a local nuclear physics feature in the neutron-rich rare-earths to explain solar $r$-process abundances , 2022, 2202.09437.

[4]  S. Rosswog,et al.  Correlations of r-process elements in very metal-poor stars as clues to their nucleosynthesis sites , 2021, Astronomy & Astrophysics.

[5]  Chris L. Fryer,et al.  Interpolating detailed simulations of kilonovae: Adaptive learning and parameter inference applications , 2021, Physical Review Research.

[6]  Using Neural Networks to Perform Rapid High-Dimensional Kilonova Parameter Inference , 2021, 2112.15470.

[7]  H. Janka,et al.  Dynamical ejecta of neutron star mergers with nucleonic weak processes I: Nucleosynthesis , 2021, 2109.02509.

[8]  L. J. Papenfort,et al.  On accretion discs formed in MHD simulations of black hole–neutron star mergers with accurate microphysics , 2021, Monthly Notices of the Royal Astronomical Society.

[9]  P. Schmidt,et al.  Tight multimessenger constraints on the neutron star equation of state from GW170817 and a forward model for kilonova light-curve synthesis , 2021, Monthly Notices of the Royal Astronomical Society.

[10]  S. Bernuzzi,et al.  AT2017gfo: Bayesian inference and model selection of multicomponent kilonovae and constraints on the neutron star equation of state , 2021, 2101.01201.

[11]  S. Bernuzzi,et al.  Mapping dynamical ejecta and disk masses from numerical relativity simulations of neutron star mergers , 2020, Classical and Quantum Gravity.

[12]  J. Barnes,et al.  Kilonovae Across the Nuclear Physics Landscape: The Impact of Nuclear Physics Uncertainties on r-process-powered Emission , 2020, The Astrophysical Journal.

[13]  N. Christensen,et al.  Comparing inclination-dependent analyses of kilonova transients , 2020, 2010.10746.

[14]  J. Barnes,et al.  Modeling Kilonova Light Curves: Dependence on Nuclear Inputs , 2020, The Astrophysical Journal.

[15]  J. Miller,et al.  Axisymmetric Radiative Transfer Models of Kilonovae , 2020, The Astrophysical Journal.

[16]  J. Lawler,et al.  Origin of the heaviest elements: The rapid neutron-capture process , 2019, Reviews of Modern Physics.

[17]  S. Bernuzzi,et al.  Numerical Relativity Simulations of the Neutron Star Merger GW170817: Long-term Remnant Evolutions, Winds, Remnant Disks, and Nucleosynthesis , 2020, 2008.04333.

[18]  T. Sakamoto,et al.  A thousand days after the merger: Continued X-ray emission from GW170817 , 2020, Monthly Notices of the Royal Astronomical Society.

[19]  P. Jaffke,et al.  Primary fission fragment mass yields across the chart of nuclides , 2019, Physical Review C.

[20]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[21]  K. Kawaguchi,et al.  Diversity of Kilonova Light Curves , 2019, The Astrophysical Journal.

[22]  K. Kawaguchi,et al.  Systematic opacity calculations for kilonovae , 2019, Monthly Notices of the Royal Astronomical Society.

[23]  Chris L. Fryer,et al.  A line-binned treatment of opacities for the spectra and light curves from neutron star mergers , 2019, Monthly Notices of the Royal Astronomical Society.

[24]  K. Hotokezaka,et al.  Merger and Mass Ejection of Neutron Star Binaries , 2019, Annual Review of Nuclear and Particle Science.

[25]  J. Miller,et al.  Full transport model of GW170817-like disk produces a blue kilonova , 2019, Physical Review D.

[26]  M. Drout,et al.  The Lanthanide Fraction Distribution in Metal-poor Stars: A Test of Neutron Star Mergers as the Dominant r-process Site , 2019, The Astrophysical Journal.

[27]  B. Metzger,et al.  Multimessenger Bayesian parameter inference of a binary neutron star merger , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[28]  L. Roberts,et al.  Viscous-dynamical Ejecta from Binary Neutron Star Mergers , 2018, The Astrophysical Journal.

[29]  R. Fern'andez,et al.  Long-term GRMHD simulations of neutron star merger accretion discs: implications for electromagnetic counterparts , 2018, Monthly Notices of the Royal Astronomical Society.

[30]  S. Smartt,et al.  Constraints on the neutron star equation of state from AT2017gfo using radiative transfer simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[31]  A. Frebel,et al.  JINAbase—A Database for Chemical Abundances of Metal-poor Stars , 2017, The Astrophysical Journal Supplement Series.

[32]  J. Sollerman,et al.  Impact of ejecta morphology and composition on the electromagnetic signatures of neutron star mergers , 2017, 1705.07084.

[33]  P. Cowperthwaite,et al.  The Combined Ultraviolet, Optical, and Near-infrared Light Curves of the Kilonova Associated with the Binary Neutron Star Merger GW170817: Unified Data Set, Analytic Models, and Physical Implications , 2017, 1710.11576.

[34]  T. Sakamoto,et al.  The X-ray counterpart to the gravitational-wave event GW170817 , 2017, Nature.

[35]  B. A. Boom,et al.  Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817 , 2017, 1710.05836.

[36]  B. A. Boom,et al.  On the Progenitor of Binary Neutron Star Merger GW170817 , 2017, 1710.05838.

[37]  P. B. Covas,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[38]  Larry Denneau,et al.  A kilonova as the electromagnetic counterpart to a gravitational-wave source , 2017, Nature.

[39]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[40]  P. Schipani,et al.  Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger , 2017, Nature.

[41]  E. Bozzo,et al.  INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817 , 2017, 1710.05449.

[42]  K. Ulaczyk,et al.  The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars , 2017, 1710.05455.

[43]  Chris L. Fryer,et al.  Swift and NuSTAR observations of GW170817: Detection of a blue kilonova , 2017, Science.

[44]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta , 2017, 1710.05456.

[45]  Jr.,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models , 2017, 1710.05840.

[46]  B. Metzger,et al.  Kilonovae , 2016, Living Reviews in Relativity.

[47]  J. Sollerman,et al.  Detectability of compact binary merger macronovae , 2016, 1611.09822.

[48]  S. Bernuzzi,et al.  Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the stars' rotation , 2016, 1611.07367.

[49]  Meng-Ru Wu,et al.  RADIOACTIVITY AND THERMALIZATION IN THE EJECTA OF COMPACT OBJECT MERGERS AND THEIR IMPACT ON KILONOVA LIGHT CURVES , 2016, 1605.07218.

[50]  Luciano Rezzolla,et al.  Dynamical Mass Ejection from Binary Neutron Star Mergers , 2016, 1601.02426.

[51]  H. Sagawa,et al.  Nuclear ground-state masses and deformations: FRDM(2012) , 2015, 1508.06294.

[52]  H. L. Zhang,et al.  The Los Alamos suite of relativistic atomic physics codes , 2015 .

[53]  A. Aprahamian,et al.  A generalized framework for nucleosynthesis calculations , 2014 .

[54]  R. Wollaeger,et al.  RADIATION TRANSPORT FOR EXPLOSIVE OUTFLOWS: OPACITY REGROUPING , 2014, 1407.3833.

[55]  Oleg Korobkin,et al.  Neutrino-driven winds from neutron star merger remnants , 2014, 1405.6730.

[56]  S. Goriely,et al.  Symmetry energy: nuclear masses and neutron stars , 2013, 1309.2783.

[57]  S. Rosswog,et al.  The long-term evolution of neutron star merger remnants – I. The impact of r-process nucleosynthesis , 2013, 1307.2939.

[58]  S. Rosswog The multi-messenger picture of compact binary mergers , 2015, 1501.02081.

[59]  S. Rosswog,et al.  On the astrophysical robustness of the neutron star merger r-process , 2012, 1206.2379.

[60]  A. Perego,et al.  MAGNETOROTATIONALLY DRIVEN SUPERNOVAE AS THE ORIGIN OF EARLY GALAXY r-PROCESS ELEMENTS? , 2012, 1203.0616.

[61]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[62]  Garching,et al.  r-PROCESS NUCLEOSYNTHESIS IN DYNAMICALLY EJECTED MATTER OF NEUTRON STAR MERGERS , 2011, 1107.0899.

[63]  William H. Lee,et al.  ELECTROMAGNETIC TRANSIENTS POWERED BY NUCLEAR DECAY IN THE TIDAL TAILS OF COALESCING COMPACT BINARIES , 2011, 1104.5504.

[64]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[65]  F. Thielemann,et al.  Neutron-induced astrophysical reaction rates for translead nuclei , 2009, 0911.2181.

[66]  V. Hill,et al.  The Hamburg/ESO R-process enhanced star survey (HERES) IV. Detailed abundance analysis and age dating of the strongly r-process enhanced stars CS 29491-069 and HE 1219-0312 , 2009, 0910.0707.

[67]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy , 2008 .

[68]  I. Ivans,et al.  Near-Ultraviolet Observations of HD 221170: New Insights into the Nature of r-Process-rich Stars , 2006, astro-ph/0604180.

[69]  S. Kulkarni,et al.  Modeling Supernova-like Explosions Associated with Gamma-ray Bursts with Short Durations , 2005, astro-ph/0510256.

[70]  V. Hill,et al.  The Extremely Metal-poor, Neutron Capture-rich Star CS 22892-052: A Comprehensive Abundance Analysis , 2003, astro-ph/0303542.

[71]  T. Beers,et al.  First stars. I. The extreme r-element rich, iron-poor halo giant CS 31082-001 - Implications for the r-process site(s) and radioactive cosmochronology , 2002, astro-ph/0203462.

[72]  Jenny Ingemarsdotter The r-Process-Enriched Low Metallicity Giant HD 115444 , 2000 .

[73]  M. Busso,et al.  Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures , 1999, astro-ph/9906266.

[74]  Bohdan Paczy'nski,et al.  Transient Events from Neutron Star Mergers , 1998, astro-ph/9807272.

[75]  W. Myers,et al.  Nuclear ground state masses and deformations , 1993, nucl-th/9308022.

[76]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[77]  J. H. Taylor,et al.  A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16 , 1982 .

[78]  D. Schramm,et al.  Neutron star collisions and the r-process , 1982 .

[79]  P. K. Kuroda Synthesis of the Elements in Stars , 1982 .

[80]  J. Lattimer,et al.  The tidal disruption of neutron stars by black holes in close binaries. , 1976 .

[81]  J. Taylor DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .

[82]  J. Lattimer,et al.  Black-Hole-Neutron-Star Collisions , 1974 .

[83]  A. G. W. Cameron,et al.  NUCLEAR REACTIONS IN STARS AND NUCLEOGENESIS , 1957 .