Trace-Function on a Galois Ring in Coding Theory
暂无分享,去创建一个
[1] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[2] A. Nechaev,et al. Linear codes over modules and over spaces. MacWilliams identity , 1996 .
[3] A. A. Nechaev,et al. Linearly presentable codes , 1996 .
[4] T. Helleseth,et al. On the weight hierarchy of Kerdock codes over Z4 , 1996, IEEE Trans. Inf. Theory.
[5] Abraham Lempel,et al. Factorization of Symmetric Matrices and Trace-Orthogonal Bases in Finite Fields , 1980, SIAM J. Comput..
[6] M. Hasse,et al. J. Dieudonné, La Géométrie des Groupes Classiques. 2. Auflage. In französischer Sprache. (Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F. Band 5) VIII + 125 S. m. 2 Abb. Berlin/Göttingen/Heidelberg 1963. Springer‐Verlag. Preis geb. DM. 38,‐ . , 1970 .
[7] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[8] Jean-Marie Goethals,et al. Alternating Bilinear Forms over GF(q) , 1975, J. Comb. Theory A.
[9] A. Nechaev,et al. Linear recurring sequences over Galois rings , 1995 .
[10] Alexander Nechaev,et al. COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: Linearly representable codes and the Kerdock code over an arbitrary Galois field of characteristic 2 , 1994 .
[11] Rudolf Lide,et al. Finite fields , 1983 .