Identification of non-linear processes using reciprocal multiquadric functions
暂无分享,去创建一个
[1] R. E. Carlson,et al. The parameter R2 in multiquadric interpolation , 1991 .
[2] R. Franke. Scattered data interpolation: tests of some methods , 1982 .
[3] J. A. Leonard,et al. Radial basis function networks for classifying process faults , 1991, IEEE Control Systems.
[4] Sheng Chen,et al. Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .
[5] M. A. Henson,et al. Input‐output linearization of general nonlinear processes , 1990 .
[6] Sheng Chen,et al. Extended model set, global data and threshold model identification of severely non-linear systems , 1989 .
[7] Norman R. Draper,et al. Applied regression analysis (2. ed.) , 1981, Wiley series in probability and mathematical statistics.
[8] S. A. Billings,et al. Experimental design and identifiability for non-linear systems , 1987 .
[9] Stephen A. Billings,et al. Non-linear system identification using neural networks , 1990 .
[10] Sandor M. Veres. Relations between information criteria for model-structure selection Part 3. Strong consistency of the predictive least squares criterion , 1990 .
[11] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces , 1971 .
[12] R. Kashyap. A Bayesian comparison of different classes of dynamic models using empirical data , 1977 .
[13] John Moody,et al. Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.
[14] D. Broomhead,et al. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .
[15] Tore K. Gustafsson. An experimental study of a class of algorithms for adaptive pH control , 1985 .
[16] S. Dasgupta,et al. Persistent excitation in bilinear systems , 1991 .
[17] Sheng Chen,et al. Practical identification of NARMAX models using radial basis functions , 1990 .
[18] M. Buhmann. Convergence of Univariate Quasi-Interpolation Using Multiquadrics , 1988 .