A new algorithm for decomposition of graphical models

In this paper, we combine Leimer’s algorithm with MCS-M algorithm to decompose graphical models into marginal models on prime blocks. It is shown by experiments that our method has an easier and faster implementation than Leimer’s algorithm.

[1]  Qiang Zhao,et al.  Decomposition of structural learning about directed acyclic graphs , 2006, Artif. Intell..

[2]  Jianhua Guo,et al.  Structural learning for Bayesian networks by testing complete separators in prime blocks , 2011, Comput. Stat. Data Anal..

[3]  José A. Gámez,et al.  Triangulation of Bayesian networks by retriangulation , 2003, Int. J. Intell. Syst..

[4]  R. Jirousek,et al.  On the effective implementation of the iterative proportional fitting procedure , 1995 .

[5]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[6]  Francesco M. Malvestuto,et al.  A hypergraph-theoretic analysis of collapsibility and decomposability for extended log-linear models , 2001, Stat. Comput..

[7]  Hanns-Georg Leimer,et al.  Optimal decomposition by clique separators , 1993, Discret. Math..

[8]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[9]  Wilson X. Wen,et al.  Optimal decomposition of belief networks , 1990, UAI.

[10]  K. Sachs,et al.  Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data , 2005, Science.

[11]  T. Speed,et al.  Markov Fields and Log-Linear Interaction Models for Contingency Tables , 1980 .

[12]  Qingqiu Gong,et al.  An Arabidopsis gene network based on the graphical Gaussian model. , 2007, Genome research.

[13]  N. Wermuth,et al.  Graphical Models for Associations between Variables, some of which are Qualitative and some Quantitative , 1989 .

[14]  Judea Pearl,et al.  Equivalence and Synthesis of Causal Models , 1990, UAI.

[15]  Zhi Geng,et al.  Decomposability and collapsibility for log-linear models , 1989 .

[16]  Barry W. Peyton,et al.  Maximum Cardinality Search for Computing Minimal Triangulations of Graphs , 2004, Algorithmica.

[17]  Kristian G. Olesen,et al.  Maximal Prime Subgraph Decomposition of Bayesian Networks , 2001, FLAIRS.

[18]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[19]  Steffen L. Lauritzen,et al.  Lectures on Contingency Tables , 2002 .

[20]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[21]  Jianhua Guo,et al.  A note on minimal d-separation trees for structural learning , 2010, Artif. Intell..

[22]  Jianhua Guo,et al.  An Improved Iterative Proportional Scaling Procedure for Gaussian Graphical Models , 2011 .

[23]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[24]  Zhi Geng,et al.  A Recursive Method for Structural Learning of Directed Acyclic Graphs , 2008, J. Mach. Learn. Res..

[25]  Nevin Lianwen Zhang,et al.  Exploiting Causal Independence in Bayesian Network Inference , 1996, J. Artif. Intell. Res..

[26]  Z. Geng,et al.  Decomposition of search for v-structures in DAGs , 2005 .

[27]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[28]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .