The heavy quarkonium inclusive decays using the principle of maximum conformality

[1]  P. Masjuan,et al.  Higher-order QCD corrections to hadronic τ decays from Padé approximants , 2018, Nuclear and Particle Physics Proceedings.

[2]  A. Mitov,et al.  Ambiguities of the principle of maximum conformality procedure for hadron collider processes , 2019, Physical Review D.

[3]  S. Brodsky,et al.  The QCD renormalization group equation and the elimination of fixed-order scheme-and-scale ambiguities using the principle of maximum conformality , 2019, Progress in Particle and Nuclear Physics.

[4]  S. Brodsky,et al.  Extending the predictive power of perturbative QCD , 2018, The European Physical Journal C.

[5]  N. Brambilla,et al.  Inclusive decays of ηc and ηb at NNLO with large nf resummation , 2018, Physical Review D.

[6]  S. Brodsky,et al.  Novel demonstration of the renormalization group invariance of the fixed-order predictions using the principle of maximum conformality and the C -scheme coupling , 2018, Physical Review D.

[7]  Xing-Gang Wu,et al.  Reanalysis of the Higgs boson decay H → gg up to ${\alpha }_{s}^{6}$-order level using the principle of maximum conformality , 2018, Journal of Physics G: Nuclear and Particle Physics.

[8]  Xing-Gang Wu,et al.  The ηc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _c$$\end{document} decays into light hadrons using the prin , 2018, The European Physical Journal C.

[9]  Xing-Gang Wu,et al.  Reconsideration of the QCD corrections to the $\eta_c$ decays into light hadrons using the principle of maximum conformality , 2017, 1709.08072.

[10]  Wen-Long Sang,et al.  Next-to-Next-to-Leading-Order QCD Corrections to the Hadronic Width of Pseudoscalar Quarkonium. , 2017, Physical review letters.

[11]  S. Brodsky,et al.  Novel All-Orders Single-Scale Approach to QCD Renormalization Scale-Setting , 2017, 1701.08245.

[12]  K. Chetyrkin,et al.  Five-Loop Running of the QCD Coupling Constant. , 2016, Physical review letters.

[13]  Xing-Gang Wu,et al.  The Higgs-boson decay $H\;\to \;{gg}$ up to ${\alpha }_{s}^{5}$-order under the minimal momentum space subtraction scheme , 2016 .

[14]  S. Brodsky,et al.  Degeneracy relations in QCD and the equivalence of two systematic all-orders methods for setting the renormalization scale , 2015, 1505.04958.

[15]  Wen-Long Sang,et al.  Can NRQCD explain the $\gamma\gamma^* \to \eta_c$ transition form factor data? , 2015, 1505.02665.

[16]  S. Brodsky,et al.  Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review , 2014, Reports on progress in physics. Physical Society.

[17]  S. Brodsky,et al.  Systematic Scale-Setting to All Orders: The Principle of Maximum Conformality and Commensurate Scale Relations , 2013, 1304.4631.

[18]  Xing-Gang Wu,et al.  Reanalysis of the BFKL Pomeron at the next-to-leading logarithmic accuracy , 2013, 1308.2381.

[19]  Ziyu Wu,et al.  Evidence forηc→γγand measurement ofJ/ψ→3γ , 2013 .

[20]  S. Brodsky,et al.  The renormalization scale-setting problem in QCD , 2013, 1302.0599.

[21]  S. Brodsky,et al.  Systematic all-orders method to eliminate renormalization-scale and scheme ambiguities in perturbative QCD. , 2012, Physical review letters.

[22]  Y. Wang,et al.  Evidence for $\eta_{c} \rightarrow \gamma\gamma$ and Measurement of $J/\psi\rightarrow 3\gamma$ , 2012, 1208.1461.

[23]  S. Brodsky,et al.  Self-consistency requirements of the renormalization group for setting the renormalization scale , 2012, 1208.0700.

[24]  S. Brodsky,et al.  Eliminating the renormalization scale ambiguity for top-pair production using the principle of maximum conformality. , 2012, Physical review letters.

[25]  S. Brodsky,et al.  Scale Setting Using the Extended Renormalization Group and the Principle of Maximum Conformality: the QCD Coupling Constant at Four Loops , 2011, 1111.6175.

[26]  S. Brodsky,et al.  Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality , 2011, 1107.0338.

[27]  K. Chao,et al.  O(alpha(s)v(2))corrections to hadronic and electromagnetic decays of S-1(0) heavy quarkonium , 2011, 1104.3138.

[28]  Wen-Long Sang,et al.  $ \mathcal{O}\left( {{\alpha_s}{v^2}} \right) $ correction to pseudoscalar quarkonium decay to two photons , 2011, 1104.1418.

[29]  Jungil Lee,et al.  NRQCD matrix elements for S-wave bottomonia and G [ ? b ( n S ) ? ? ? ] with relativistic correction , 2010, 1011.1554.

[30]  K. Maltman,et al.  The strong coupling and its running to four loops in a minimal MOM scheme , 2009, 0903.1696.

[31]  G. Bodwin,et al.  Improved determination of color-singlet nonrelativistic QCD matrix elements for S-wave charmonium , 2007, 0710.0994.

[32]  S. Brodsky,et al.  The Form Factors of the Gauge-Invariant Three-Gluon Vertex , 2006, hep-ph/0602199.

[33]  M. Czakon,et al.  The Four-loop QCD beta-function and anomalous dimensions , 2004, hep-ph/0411261.

[34]  K. Chetyrkin Four-loop renormalization of QCD: full set of renormalization constants and anomalous dimensions , 2004, hep-ph/0405193.

[35]  G. Bodwin,et al.  Order-v 4 corrections to S-wave quarkonium decay , 2002, hep-ph/0205210.

[36]  K. Melnikov,et al.  Charmonium decays: J/ψ→e+e− and ηc→γγ , 2001, hep-ph/0109054.

[37]  G. Cvetič Improvement of the method of diagonal Padé approximants for perturbative series in gauge theories , 1997, hep-ph/9711487.

[38]  M. Karliner,et al.  Asymptotic Pade approximant predictions: Up to five loops in QCD and SQCD , 1997, hep-ph/9710302.

[39]  T. V. Ritbergen,et al.  The four-loop β-function in quantum chromodynamics , 1997, hep-ph/9701390.

[40]  E. Gardi Why Padé approximants reduce the renormalization-scale dependence in QFT , 1996, hep-ph/9611453.

[41]  P. Burrows,et al.  Application of Padé approximants to determination of αs(MZ2) from hadronic event shape observables in e+e− annihilation , 1996, hep-ph/9609513.

[42]  M. Karliner,et al.  A Prediction for the 4-Loop \beta Function , 1996, hep-ph/9612202.

[43]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[44]  Samuel,et al.  Comparison of the Padé approximation method to perturbative QCD calculations. , 1995, Physical review letters.

[45]  M. Beneke,et al.  Naive nonabelianization and resummation of fermion bubble chains , 1994, hep-ph/9411229.

[46]  E. Braaten,et al.  Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium. , 1994, Physical review. D, Particles and fields.

[47]  Samuel,et al.  Estimating perturbative coefficients in quantum field theory using Padé approximants. , 1993, Physical review. D, Particles and fields.

[48]  J. Vermaseren,et al.  The three-loop QCD β-function and anomalous dimensions , 1993, hep-ph/9302208.

[49]  J. Vermaseren,et al.  The three-loop QCD beta-function and anomalous dimensions , 1992 .

[50]  K. Hagiwara,et al.  Hadronic decay rate of ground-state para-quarkonia in quantum chromodynamics , 1981 .

[51]  A. Vladimirov,et al.  The gell-mann-low function of QCD in the three-loop approximation , 1980 .

[52]  R. Gonsalves,et al.  Renormalization-prescription dependence of the quantum-chromodynamic coupling constant , 1979 .

[53]  G. Curci,et al.  Strong Radiative Corrections to Annihilations of Quarkonia in QCD , 1979 .

[54]  R. Gonsalves,et al.  Quantum-Chromodynamics Perturbation Expansions in a Coupling Constant Renormalized by Momentum-Space Subtraction , 1979 .

[55]  W. E. Caswell Asymptotic Behavior of Non-Abelian Gauge Theories to Two-Loop Order , 1974 .

[56]  H. Politzer,et al.  Reliable Perturbative Results for Strong Interactions , 1973 .

[57]  F. Wilczek,et al.  Ultraviolet Behavior of Non-Abelian Gauge Theories , 1973 .

[58]  J. Basdevant The Padé Approximation and its Physical Applications , 1972 .

[59]  B. Dewitt QUANTUM THEORY OF GRAVITY. II. THE MANIFESTLY COVARIANT THEORY. , 1967 .