Fundamental Speed Limits to the Generation of Quantumness

Quantum physics dictates fundamental speed limits during time evolution. We present a quantum speed limit governing the generation of nonclassicality and the mutual incompatibility of two states connected by time evolution. This result is used to characterize the timescale required to generate a given amount of quantumness under an arbitrary physical process. The bound is found to be tight under pure dephasing dynamics. More generally, our analysis reveals the dependence on the initial and final states and non-Markovian effects.

[1]  G. N. Fleming A unitarity bound on the evolution of nonstationary states , 1973 .

[2]  Kamal Bhattacharyya,et al.  Quantum decay and the Mandelstam-Tamm-energy inequality , 1983 .

[3]  Aharonov,et al.  Geometry of quantum evolution. , 1990, Physical review letters.

[4]  I. Tamm,et al.  The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics , 1991 .

[5]  Lev Vaidman,et al.  Minimum time for the evolution to an orthogonal quantum state , 1992 .

[6]  Armin Uhlmann,et al.  An energy dispersion estimate , 1992 .

[7]  Pfeifer How fast can a quantum state change with time? , 1993, Physical review letters.

[8]  N. Margolus,et al.  The maximum speed of dynamical evolution , 1997, quant-ph/9710043.

[9]  Walter T. Strunz,et al.  The non-Markovian stochastic Schrödinger equation for open systems , 1997, quant-ph/9706050.

[10]  N. Gisin,et al.  Non-Markovian quantum state diffusion , 1998, quant-ph/9803062.

[11]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[12]  S. Lloyd Computational capacity of the universe. , 2001, Physical review letters.

[13]  Dorje C. Brody Elementary derivation for passage times , 2003 .

[14]  S. Lloyd,et al.  Quantum limits to dynamical evolution , 2002, quant-ph/0210197.

[15]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[16]  Tatsuhiko Koike,et al.  Time-optimal quantum evolution. , 2006, Physical review letters.

[17]  Mile Gu,et al.  Quantum Computation as Geometry , 2006, Science.

[18]  P. Král,et al.  Colloquium: Coherently controlled adiabatic passage , 2007 .

[19]  Stuart A Rice,et al.  On the consistency, extremal, and global properties of counterdiabatic fields. , 2008, The Journal of chemical physics.

[20]  T. Toffoli,et al.  Fundamental limit on the rate of quantum dynamics: the unified bound is tight. , 2009, Physical review letters.

[21]  S Montangero,et al.  Optimal control at the quantum speed limit. , 2009, Physical review letters.

[22]  Daniel A. Lidar,et al.  Intrinsic geometry of quantum adiabatic evolution and quantum phase transitions , 2010, 1004.0509.

[23]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[24]  Wojciech H Zurek,et al.  Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. , 2012, Physical review letters.

[25]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[26]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[27]  M. M. Taddei,et al.  Quantum speed limit for physical processes. , 2012, Physical review letters.

[28]  G. C. Hegerfeldt,et al.  Driving at the quantum speed limit: optimal control of a two-level system. , 2013, Physical review letters.

[29]  M B Plenio,et al.  Quantum speed limits in open system dynamics. , 2012, Physical review letters.

[30]  Susan Stepney,et al.  Zermelo Navigation and a Speed Limit to Quantum Information Processing , 2013, ArXiv.

[31]  Lian-Ao Wu,et al.  Inverse Engineering Control in Open Quantum Systems , 2013 .

[32]  R. Srikanth,et al.  Quantifying quantumness via commutators: an application to quantum walk , 2013, 1312.1329.

[33]  E. Lutz,et al.  Quantum speed limit for non-Markovian dynamics. , 2013, Physical review letters.

[34]  Ting Yu,et al.  Restoration of a quantum state in a dephasing channel via environment-assisted error correction , 2013 .

[35]  M. Paternostro,et al.  More bang for your buck: Super-adiabatic quantum engines , 2013, Scientific Reports.

[36]  D. Brody,et al.  Time-optimal navigation through quantum wind , 2014, 1410.6724.

[37]  Jason R. Green,et al.  Measuring disorder in irreversible decay processes. , 2014, The Journal of chemical physics.

[38]  Ronnie Kosloff,et al.  Purity and entropy evolution speed limits for open quantum systems , 2014, 1408.1227.

[39]  Wei Han,et al.  Quantum speed limit for arbitrary initial states , 2013, Scientific Reports.

[40]  Masoud Mohseni,et al.  Quantum brachistochrone curves as geodesics: obtaining accurate minimum-time protocols for the control of quantum systems. , 2014, Physical review letters.

[41]  J. Eisert,et al.  Quantum many-body systems out of equilibrium , 2014, Nature Physics.

[42]  Daniel A. Lidar,et al.  Quantum Speed Limits for Leakage and Decoherence. , 2015, Physical review letters.

[43]  E. Solano,et al.  Quantum Simulation of Dissipative Processes without Reservoir Engineering , 2014, Scientific Reports.

[44]  Alan C. Santos,et al.  Superadiabatic Controlled Evolutions and Universal Quantum Computation , 2015, Scientific Reports.

[45]  S. Stepney,et al.  Zermelo navigation in the quantum brachistochrone , 2014, 1409.2055.

[46]  Giuseppe Marmo,et al.  Measuring quantumness: from theory to observability in interferometric setups , 2015, The European Physical Journal D.