Carbonation Study of Cement-Based Material by Electrochemical Impedance Method

[1]  Géraldine Villain,et al.  Two Experimental Methods to Determine Carbonation Profiles in Concrete , 2006 .

[2]  L. Tong,et al.  Chloride diffusivity based on migration testing , 2001 .

[3]  Kenneth A. Snyder,et al.  Estimating the electrical conductivity of cement paste pore solutions from OH-, K+ and Na+ concentrations , 2003 .

[4]  Renato Vitaliani,et al.  Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures - Part II practical applications , 2005 .

[5]  J. Beaudoin,et al.  A.C. impedance spectroscopy (I): A new equivalent circuit model for hydrated portland cement paste , 1992 .

[6]  Jing Wen Chen,et al.  The experimental investigation of concrete carbonation depth , 2006 .

[7]  Duo Zhang,et al.  Early age carbonation curing for precast reinforced concretes , 2016 .

[8]  A. Leemann,et al.  Relation between carbonation resistance, mix design and exposure of mortar and concrete , 2015 .

[9]  Ueli Angst,et al.  Critical Chloride Content in Reinforced Concrete: A Review , 2009 .

[10]  Fernando A. Branco,et al.  Field assessment of the relationship between natural and accelerated concrete carbonation resistance , 2013 .

[11]  Feng Xing,et al.  Electrochemical impedance measurement and modeling analysis of the carbonation behavior for cementititous materials , 2014 .

[12]  Belén Díaz,et al.  Study of the chloride diffusion in mortar: A new method of determining diffusion coefficients based on impedance measurements , 2006 .

[13]  L. Catalan,et al.  A COMPARISON OF METHODS FOR DETERMINING CARBONATION DEPTH IN FLY-ASH BLENDED CEMENT MORTARS , 2015 .

[14]  L. Kavan,et al.  Electrochemical impedance spectroscopy of polycrystalline boron doped diamond layers with hydrogen and oxygen terminated surface , 2015 .

[15]  S. E. Chidiac,et al.  Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28 days , 2008 .

[16]  Faiz Shaikh,et al.  Chloride induced corrosion durability of high volume fly ash concretes containing nano particles , 2015 .

[17]  J. Randles Kinetics of rapid electrode reactions , 1947 .

[18]  C. Page,et al.  Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes , 1997 .

[19]  C. Andrade,et al.  Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE , 2008 .

[20]  Patrick Dangla,et al.  Impact of accelerated carbonation on OPC cement paste blended with fly ash , 2015 .

[21]  J. Beaudoin,et al.  A rationalized a.c. impedence model for microstructural characterization of hydrating cement systems , 1993 .

[22]  Isidro Sánchez,et al.  Impedance spectroscopy study of hardened Portland cement paste , 2002 .

[23]  L. Soriano,et al.  Evaluation of the pozzolanic activity of spent FCC catalyst/fly ash mixtures in Portland cement pastes , 2016 .

[24]  Jitendra Jain,et al.  Chloride transport in fly ash and glass powder modified concretes - Influence of test methods on microstructure , 2010 .

[25]  Jian Sun,et al.  Determination of chloride diffusivity in concrete by AC impedance spectroscopy , 1999 .

[26]  O. Çopuroğlu,et al.  Effect of global climatic change on carbonation progress of concrete , 2007 .

[27]  Nicholas H. Florin,et al.  Statistical analysis of the carbonation rate of concrete , 2015 .

[28]  Linhua Jiang,et al.  Characterization of sulfate diffusion into cement paste by low frequency impedance spectroscopy , 2016 .

[29]  Ravindra K. Dhir,et al.  Carbonation behaviour of recycled aggregate concrete , 2015 .

[30]  Jay G. Sanjayan,et al.  Resistance of alkali-activated slag concrete to carbonation , 2001 .

[31]  J. Gilbert,et al.  The voltage-dependent electrochemical impedance spectroscopy of CoCrMo medical alloy using time-domain techniques: Generalized Cauchy-Lorentz, and KWW-Randles functions describing non-ideal interfacial behaviour , 2011 .

[32]  Feng Xing,et al.  Carbonation of concrete made with dredged marine sand and its effect on chloride binding , 2016 .

[33]  S. Tangtermsirikul,et al.  A study on carbonation depth prediction for fly ash concrete , 2006 .

[34]  J. R. Mackechnie,et al.  Carbonation of concrete bridge structures in three South African localities , 2007 .

[35]  José Marcos Ortega,et al.  Impedance spectroscopy study of the effect of environmental conditions in the microstructure development of OPC and slag cement mortars , 2015 .

[36]  J. Abrantes,et al.  Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach , 2016 .

[37]  D. Macdonald Reflections on the history of electrochemical impedance spectroscopy , 2006 .

[38]  B. Johannesson,et al.  Microstructural changes caused by carbonation of cement mortar , 2001 .

[39]  Linhua Jiang,et al.  Impact of compressive fatigue on chloride diffusion coefficient in OPC concrete: An analysis using EIS method , 2016 .

[40]  M. C. Alonso,et al.  Modification of Composition and Microstructure of Portland Cement Pastes as a Result of Natural and Supercritical Carbonation Procedures , 2006 .

[41]  Valter Doleček,et al.  Substitution of the constant phase element by Warburg impedance for protective coatings , 2007 .

[42]  Jun Liu,et al.  Understanding the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement concrete , 2017 .

[43]  Dan Du,et al.  A disposable impedance sensor for electrochemical study and monitoring of adhesion and proliferation of K562 leukaemia cells , 2007 .

[44]  Carlos Chastre,et al.  Carbonation Service Life modelling of RC structures for concrete with portland and blended cements. , 2013 .

[45]  Milos Nesladek,et al.  Electrochemistry and in situ Raman spectroelectrochemistry of low and high quality boron doped diamond layers in aqueous electrolyte solution , 2013 .

[46]  C. Page,et al.  The pore solution phase of carbonated cement pastes , 2005 .

[47]  Yanbin Li,et al.  Interdigitated Array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7. , 2004, Analytical chemistry.

[48]  G. Song Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete , 2000 .

[49]  Michael N. Fardis,et al.  FUNDAMENTAL MODELING AND EXPERIMENTAL INVESTIGATION OF CONCRETE CARBONATION , 1991 .

[50]  Feng Xing,et al.  Electrochemical impedance interpretation of the carbonation behavior for fly ash–slag–cement materials , 2015 .

[51]  K. Sisomphon,et al.  Carbonation rates of concretes containing high volume of pozzolanic materials , 2007 .

[52]  C. Dowding,et al.  Accelerated protocol for measurement of carbonation through a crack surface , 2007 .

[53]  W. Aperador,et al.  MÖSSBAUER AND XRD ANALYSIS OF CORROSION PRODUCTS OF CARBONATED ALKALI-ACTIVATED SLAG REINFORCED CONCRETES , 2011 .

[54]  Jing-Juan Xu,et al.  Interfacing cytochrome c to electrodes with a DNA: carbon nanotube composite film , 2002 .

[55]  Jean-Paul Balayssac,et al.  Carbonation assessment in concrete by nonlinear ultrasound , 2011 .

[56]  Nele De Belie,et al.  Carbonation of slag concrete: Effect of the cement replacement level and curing on the carbonation coefficient – Effect of carbonation on the pore structure , 2013 .

[57]  Juan Bisquert,et al.  Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer , 2002 .

[58]  D. D. Molin,et al.  Carbonation-induced reinforcement corrosion in silica fume concrete , 2009 .

[59]  Daman K. Panesar,et al.  Accelerated carbonation – A potential approach to sequester CO2 in cement paste containing slag and reactive MgO , 2013 .

[60]  Michael Böhm,et al.  Competition of several carbonation reactions in concrete: a parametric study , 2008 .

[61]  Michael N. Fardis,et al.  Hydration and Carbonation of Pozzolanic Cements , 1992 .

[62]  Jean-Louis Marty,et al.  Impedimetric aflatoxin M1 immunosensor based on colloidal gold and silver electrodeposition , 2009 .

[63]  Feng Xing,et al.  Characterization of carbonation behavior of fly ash blended cement materials by the electrochemical impedance spectroscopy method , 2016 .

[64]  B. Dong,et al.  Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy , 2014, Materials.

[65]  Lech Czarnecki,et al.  Concrete Carbonation as a Limited Process and Its Relevance to Concrete Cover Thickness , 2012 .

[66]  Jun Liu,et al.  Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete , 2014, Materials.

[67]  Jun Liu,et al.  Degradation of fly ash concrete under the coupled effect of carbonation and chloride aerosol ingress , 2016 .

[68]  Feng Xing,et al.  Impedance spectroscopic studies of cement-based piezoelectric ceramic composites , 2008 .

[69]  C. Andrade,et al.  Indicator of carbonation front in concrete as substitute to phenolphthalein , 2016 .

[70]  Renato Vitaliani,et al.  Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures Part I: Theoretical formulation , 2004 .

[71]  Guo-ping Li,et al.  Resistance of Segmental Joints to Carbonation , 2017 .

[72]  S. Wong,et al.  Carbonation of Concrete Containing Mineral Admixtures , 2003 .