Eigenstate Thermalization Hypothesis for Wigner Matrices
暂无分享,去创建一个
Dominik Schröder | Giorgio Cipolloni | László Erdős | L. Erdős | Giorgio Cipolloni | Dominik Schröder
[1] Elon Lindenstrauss,et al. Non-localization of eigenfunctions on large regular graphs , 2009, 0912.3239.
[2] Alex H. Barnett. Asymptotic rate of quantum ergodicity in chaotic euclidean billiards , 2005 .
[3] Peter Sarnak,et al. The behaviour of eigenstates of arithmetic hyperbolic manifolds , 1994 .
[4] H. Yau,et al. Isotropic local laws for sample covariance and generalized Wigner matrices , 2013, 1308.5729.
[5] E. Lindenstrauss. Invariant measures and arithmetic quantum unique ergodicity , 2006 .
[6] W. Hachem,et al. Large Complex Correlated Wishart Matrices: The Pearcey Kernel and Expansion at the Hard Edge , 2015, 1507.06013.
[7] P. Erdos,et al. On chromatic number of graphs and set-systems , 1966 .
[8] J. M. Deutsch. Eigenstate thermalization hypothesis , 2018, Reports on progress in physics. Physical Society.
[9] Deutsch,et al. Quantum statistical mechanics in a closed system. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[10] H. Yau,et al. Random Band Matrices in the Delocalized Phase I: Quantum Unique Ergodicity and Universality , 2018, Communications on Pure and Applied Mathematics.
[11] K. Soundararajan,et al. Mass equidistribution for Hecke eigenforms , 2008, 0809.1636.
[12] Horng-Tzer Yau,et al. Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.
[13] Quantum unique ergodicity for parabolic maps , 1999, math-ph/9901001.
[14] Nalini Anantharaman,et al. Quantum ergodicity on large regular graphs , 2013, 1304.4343.
[15] Jun Yin,et al. Eigenvector distribution of Wigner matrices , 2011, 1102.0057.
[16] E. Wigner. Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .
[17] Steve Zelditch,et al. Uniform distribution of eigenfunctions on compact hyperbolic surfaces , 1987 .
[18] K. Soundararajan,et al. Quantum unique ergodicity for SL_2(Z)\H , 2009, 0901.4060.
[19] Z. Rudnick,et al. On the distribution of matrix elements for the quantum cat map , 2003, math/0302277.
[20] M. Rigol,et al. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics , 2015, 1509.06411.
[21] Srednicki. Chaos and quantum thermalization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[22] S. Zelditch. Recent Developments in Mathematical Quantum Chaos , 2009, 0911.4312.
[23] Tuomas Sahlsten,et al. Quantum ergodicity and Benjamini–Schramm convergence of hyperbolic surfaces , 2016, 1605.05720.
[24] S. Zelditch. On the rate of quantum ergodicity I: Upper bounds , 1994 .
[25] E. Lindenstrauss,et al. Joint quasimodes, positive entropy, and quantum unique ergodicity , 2011, 1112.5311.
[26] Antti Knowles,et al. Local Semicircle Law for Random Regular Graphs , 2015, 1503.08702.
[27] H. Yau,et al. High Dimensional Normality of Noisy Eigenvectors , 2020, Communications in Mathematical Physics.
[28] L. Benigni. Eigenvectors distribution and quantum unique ergodicity for deformed Wigner matrices , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[29] Antti Knowles,et al. Averaging Fluctuations in Resolvents of Random Band Matrices , 2012, 1205.5664.
[30] Terence Tao,et al. Random matrices: Universal properties of eigenvectors , 2011, 1103.2801.
[31] Yukun He,et al. Mesoscopic eigenvalue statistics of Wigner matrices , 2016, 1603.01499.
[32] Jun Yin,et al. The Isotropic Semicircle Law and Deformation of Wigner Matrices , 2011, 1110.6449.
[33] H. Yau,et al. The Eigenvector Moment Flow and Local Quantum Unique Ergodicity , 2013, 1312.1301.
[34] N. Anantharaman,et al. Quantum Ergodicity on Graphs : from Spectral to Spatial Delocalization , 2017, 1704.02766.
[35] Horng-Tzer Yau,et al. Local Kesten–McKay Law for Random Regular Graphs , 2016, Communications in Mathematical Physics.
[36] Hamid Hezari,et al. Quantitative equidistribution properties of toral eigenfunctions , 2015, 1503.02794.
[37] N. Anantharaman. Quantum Ergodicity on Regular Graphs , 2017 .
[38] L'aszl'o ErdHos,et al. Functional central limit theorems for Wigner matrices , 2020, The Annals of Applied Probability.
[39] R. Schubert. On the Rate of Quantum Ergodicity for Quantised Maps , 2008 .
[40] L'aszl'o ErdHos,et al. RANDOM MATRICES WITH SLOW CORRELATION DECAY , 2017, Forum of Mathematics, Sigma.
[41] D. R. Lick,et al. k-Degenerate Graphs , 1970, Canadian Journal of Mathematics.
[42] L'aszl'o ErdHos,et al. Cusp Universality for Random Matrices I: Local Law and the Complex Hermitian Case , 2018, Communications in Mathematical Physics.
[43] Fishman,et al. Approach to ergodicity in quantum wave functions. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[44] Y. C. Verdière,et al. Ergodicité et fonctions propres du laplacien , 1985 .
[45] P. Erdos,et al. On chromatic number of graphs and set-systems , 1966 .
[46] Upper Bounds on the Rate of Quantum Ergodicity , 2005, math-ph/0503045.
[47] Pérès,et al. Distribution of matrix elements of chaotic systems. , 1986, Physical review. A, General physics.
[48] A. Boutet de Monvel,et al. Asymptotic distribution of smoothed eigenvalue density. I. Gaussian random matrices , 1999 .
[49] H. Yau,et al. The local semicircle law for a general class of random matrices , 2012, 1212.0164.
[50] L. Erdős,et al. The Altshuler–Shklovskii Formulas for Random Band Matrices I: the Unimodular Case , 2013, 1309.5106.
[51] H. Yau,et al. Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.