Eigenstate Thermalization Hypothesis for Wigner Matrices

We prove that any deterministic matrix is approximately the identity in the eigenbasis of a large random Wigner matrix with very high probability and with an optimal error inversely proportional to the square root of the dimension. Our theorem thus rigorously verifies the Eigenstate Thermalisation Hypothesis by Deutsch (Phys Rev A 43:2046–2049, 1991) for the simplest chaotic quantum system, the Wigner ensemble. In mathematical terms, we prove the strong form of Quantum Unique Ergodicity (QUE) with an optimal convergence rate for all eigenvectors simultaneously, generalizing previous probabilistic QUE results in Bourgade and Yau (Commun Math Phys 350:231–278, 2017) and Bourgade et al. (Commun Pure Appl Math 73:1526–1596, 2020).

[1]  Elon Lindenstrauss,et al.  Non-localization of eigenfunctions on large regular graphs , 2009, 0912.3239.

[2]  Alex H. Barnett Asymptotic rate of quantum ergodicity in chaotic euclidean billiards , 2005 .

[3]  Peter Sarnak,et al.  The behaviour of eigenstates of arithmetic hyperbolic manifolds , 1994 .

[4]  H. Yau,et al.  Isotropic local laws for sample covariance and generalized Wigner matrices , 2013, 1308.5729.

[5]  E. Lindenstrauss Invariant measures and arithmetic quantum unique ergodicity , 2006 .

[6]  W. Hachem,et al.  Large Complex Correlated Wishart Matrices: The Pearcey Kernel and Expansion at the Hard Edge , 2015, 1507.06013.

[7]  P. Erdos,et al.  On chromatic number of graphs and set-systems , 1966 .

[8]  J. M. Deutsch Eigenstate thermalization hypothesis , 2018, Reports on progress in physics. Physical Society.

[9]  Deutsch,et al.  Quantum statistical mechanics in a closed system. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[10]  H. Yau,et al.  Random Band Matrices in the Delocalized Phase I: Quantum Unique Ergodicity and Universality , 2018, Communications on Pure and Applied Mathematics.

[11]  K. Soundararajan,et al.  Mass equidistribution for Hecke eigenforms , 2008, 0809.1636.

[12]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[13]  Quantum unique ergodicity for parabolic maps , 1999, math-ph/9901001.

[14]  Nalini Anantharaman,et al.  Quantum ergodicity on large regular graphs , 2013, 1304.4343.

[15]  Jun Yin,et al.  Eigenvector distribution of Wigner matrices , 2011, 1102.0057.

[16]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[17]  Steve Zelditch,et al.  Uniform distribution of eigenfunctions on compact hyperbolic surfaces , 1987 .

[18]  K. Soundararajan,et al.  Quantum unique ergodicity for SL_2(Z)\H , 2009, 0901.4060.

[19]  Z. Rudnick,et al.  On the distribution of matrix elements for the quantum cat map , 2003, math/0302277.

[20]  M. Rigol,et al.  From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics , 2015, 1509.06411.

[21]  Srednicki Chaos and quantum thermalization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  S. Zelditch Recent Developments in Mathematical Quantum Chaos , 2009, 0911.4312.

[23]  Tuomas Sahlsten,et al.  Quantum ergodicity and Benjamini–Schramm convergence of hyperbolic surfaces , 2016, 1605.05720.

[24]  S. Zelditch On the rate of quantum ergodicity I: Upper bounds , 1994 .

[25]  E. Lindenstrauss,et al.  Joint quasimodes, positive entropy, and quantum unique ergodicity , 2011, 1112.5311.

[26]  Antti Knowles,et al.  Local Semicircle Law for Random Regular Graphs , 2015, 1503.08702.

[27]  H. Yau,et al.  High Dimensional Normality of Noisy Eigenvectors , 2020, Communications in Mathematical Physics.

[28]  L. Benigni Eigenvectors distribution and quantum unique ergodicity for deformed Wigner matrices , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[29]  Antti Knowles,et al.  Averaging Fluctuations in Resolvents of Random Band Matrices , 2012, 1205.5664.

[30]  Terence Tao,et al.  Random matrices: Universal properties of eigenvectors , 2011, 1103.2801.

[31]  Yukun He,et al.  Mesoscopic eigenvalue statistics of Wigner matrices , 2016, 1603.01499.

[32]  Jun Yin,et al.  The Isotropic Semicircle Law and Deformation of Wigner Matrices , 2011, 1110.6449.

[33]  H. Yau,et al.  The Eigenvector Moment Flow and Local Quantum Unique Ergodicity , 2013, 1312.1301.

[34]  N. Anantharaman,et al.  Quantum Ergodicity on Graphs : from Spectral to Spatial Delocalization , 2017, 1704.02766.

[35]  Horng-Tzer Yau,et al.  Local Kesten–McKay Law for Random Regular Graphs , 2016, Communications in Mathematical Physics.

[36]  Hamid Hezari,et al.  Quantitative equidistribution properties of toral eigenfunctions , 2015, 1503.02794.

[37]  N. Anantharaman Quantum Ergodicity on Regular Graphs , 2017 .

[38]  L'aszl'o ErdHos,et al.  Functional central limit theorems for Wigner matrices , 2020, The Annals of Applied Probability.

[39]  R. Schubert On the Rate of Quantum Ergodicity for Quantised Maps , 2008 .

[40]  L'aszl'o ErdHos,et al.  RANDOM MATRICES WITH SLOW CORRELATION DECAY , 2017, Forum of Mathematics, Sigma.

[41]  D. R. Lick,et al.  k-Degenerate Graphs , 1970, Canadian Journal of Mathematics.

[42]  L'aszl'o ErdHos,et al.  Cusp Universality for Random Matrices I: Local Law and the Complex Hermitian Case , 2018, Communications in Mathematical Physics.

[43]  Fishman,et al.  Approach to ergodicity in quantum wave functions. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  Y. C. Verdière,et al.  Ergodicité et fonctions propres du laplacien , 1985 .

[45]  P. Erdos,et al.  On chromatic number of graphs and set-systems , 1966 .

[46]  Upper Bounds on the Rate of Quantum Ergodicity , 2005, math-ph/0503045.

[47]  Pérès,et al.  Distribution of matrix elements of chaotic systems. , 1986, Physical review. A, General physics.

[48]  A. Boutet de Monvel,et al.  Asymptotic distribution of smoothed eigenvalue density. I. Gaussian random matrices , 1999 .

[49]  H. Yau,et al.  The local semicircle law for a general class of random matrices , 2012, 1212.0164.

[50]  L. Erdős,et al.  The Altshuler–Shklovskii Formulas for Random Band Matrices I: the Unimodular Case , 2013, 1309.5106.

[51]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.