On modeling interchannel dependency for color image denoising

In this article, we study the modeling of interchannel dependency and its application into removing additive noise from corrupted color images. We start from an ad hoc spatially invariant linear interpolative model for characterizing color‐difference and demonstrate how it can be jointly used with a variational intrachannel dependency model to suppress noise by alternating projections. Then we present two nonlinear diffusion‐based models in the color‐difference domain and suggest their spatial adaptation property better matches the class of images with strong chromatic edges. The diversity of interchannel dependency models also motivates us to fuse multiple denoised images from different models to obtain better denoised results. Experimental results are reported to justify the importance of matching the hypothesized dependency model with observation data as well as the benefit of multihypothesis fusion. © 2007 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 17, 163–173, 2007

[1]  Ron Kimmel,et al.  Variational Restoration and Edge Detection for Color Images , 2003, Journal of Mathematical Imaging and Vision.

[2]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Eero P. Simoncelli,et al.  On Advances in Statistical Modeling of Natural Images , 2004, Journal of Mathematical Imaging and Vision.

[4]  Daniel Keren,et al.  Denoising Color Images Using Regularization and "Correlation Terms" , 1998, J. Vis. Commun. Image Represent..

[5]  Rachid Deriche,et al.  Vector-valued image regularization with PDEs: a common framework for different applications , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Dante C. Youla,et al.  Generalized Image Restoration by the Method of Alternating Orthogonal Projections , 1978 .

[7]  Michael H. Brill,et al.  Color appearance models , 1998 .

[8]  Rastislav Lukac,et al.  A Taxonomy of Color Image Filtering and Enhancement Solutions , 2006 .

[9]  Rastislav Lukac,et al.  Adaptive vector median filtering , 2003, Pattern Recognit. Lett..

[10]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[11]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[12]  Rastislav Lukac,et al.  Normalized color-ratio modeling for CFA interpolation , 2004, IEEE Transactions on Consumer Electronics.

[13]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Mahdi Nezamabadi,et al.  Color Appearance Models , 2014, J. Electronic Imaging.

[15]  Gary E. Ford,et al.  Mean curvature evolution and surface area scaling in image filtering , 1997, IEEE Trans. Image Process..

[16]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[17]  Guillermo Sapiro,et al.  Color image enhancement via chromaticity diffusion , 2001, IEEE Trans. Image Process..

[18]  Yuk-Hee Chan,et al.  Color Demosaicing Using Variance of Color Differences , 2006, IEEE Transactions on Image Processing.

[19]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[20]  Rastislav Lukac,et al.  Demosaicking using Vector Spectral Model , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[21]  C. A. Murthy,et al.  Hue-preserving color image enhancement without gamut problem , 2003, IEEE Trans. Image Process..

[22]  Panos E. Trahanias,et al.  Vector directional filters-a new class of multichannel image processing filters , 1993, IEEE Trans. Image Process..

[23]  J. Astola,et al.  Vector median filters , 1990, Proc. IEEE.

[24]  Lei Zhang,et al.  Color demosaicking via directional linear minimum mean square-error estimation , 2005, IEEE Transactions on Image Processing.

[25]  Xin Li,et al.  Demosaicing by successive approximation , 2005, IEEE Transactions on Image Processing.

[26]  Javier Portilla,et al.  Full blind denoising through noise covariance estimation using Gaussian scale mixtures in the wavelet domain , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[27]  G. Aubert,et al.  Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (Applied Mathematical Sciences) , 2006 .

[28]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[29]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[30]  Soo-Chang Pei,et al.  Effective color interpolation in CCD color filter array using signal correlation , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[31]  Stan Z. Li,et al.  Learning multiview face subspaces and facial pose estimation using independent component analysis , 2005, IEEE Transactions on Image Processing.

[32]  K. Martin,et al.  Vector filtering for color imaging , 2005, IEEE Signal Processing Magazine.

[33]  Ron Kimmel,et al.  Demosaicing: Image Reconstruction from Color CCD Samples , 1998, ECCV.

[34]  Soo-Chang Pei,et al.  Effective color interpolation in CCD color filter arrays using signal correlation , 2003, IEEE Trans. Circuits Syst. Video Technol..

[35]  L. Vese,et al.  A Variational Method in Image Recovery , 1997 .

[36]  Wenyuan Xu,et al.  Behavioral analysis of anisotropic diffusion in image processing , 1996, IEEE Trans. Image Process..

[37]  Yücel Altunbasak,et al.  Super-resolution reconstruction of compressed video using transform-domain statistics , 2004, IEEE Transactions on Image Processing.

[38]  K. Plataniotis,et al.  Color Image Processing and Applications , 2000 .

[39]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[40]  David Tschumperlé,et al.  Fast Anisotropic Smoothing of Multi-Valued Images using Curvature-Preserving PDE's , 2006, International Journal of Computer Vision.

[41]  Rastislav Lukac,et al.  Generalized Selection Weighted Vector Filters , 2004, EURASIP J. Adv. Signal Process..