A Survey of Generator Maintenance Scheduling Techniques By

Many maintenance-scheduling methods have been proposed using conventional mathematical programming methods or heuristic techniques. Heuristic approaches provide the most primitive solution based on trial-and-error approaches. Mathematical optimization based techniques are completely distinct from classical programming and trial-and-error heuristic methods. These techniques have been proposed to solve small maintenance scheduling problems. In this paper we explain the difference between both methods in solving generator maintenance scheduling (GMS) problem.

[1]  Vladimiro Miranda,et al.  Evolutionary computation in power systems , 1998 .

[2]  Youssef Saab,et al.  Combinatorial optimization by stochastic evolution , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Mitsuo Gen,et al.  A method for maintenance scheduling using GA combined with SA , 1994 .

[4]  Malcolm Irving,et al.  Large scale unit commitment using a hybrid genetic algorithm , 1997 .

[5]  J.F. Dopazo,et al.  Optimal generator maintenance scheduling using integer programming , 1975, IEEE Transactions on Power Apparatus and Systems.

[6]  Hong-Tzer Yang,et al.  Effective algorithm for handling constraints in generator maintenance scheduling , 2002 .

[7]  Edmund K. Burke,et al.  A multi-stage approach for the thermal generator maintenance scheduling problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[8]  Y. W. Wong,et al.  Short-term hydrothermal scheduling part. I. Simulated annealing approach , 1994 .

[9]  Richard Bellman,et al.  Mathematical Aspects Of Scheduling And Applications , 1982 .

[10]  S. Baskar,et al.  Genetic algorithms solution to generator maintenance scheduling with modified genetic operators , 2003 .

[11]  S. M. Shahidehpour,et al.  Short-term transmission line maintenance scheduling in a deregulated system , 1999, Proceedings of the 21st International Conference on Power Industry Computer Applications. Connecting Utilities. PICA 99. To the Millennium and Beyond (Cat. No.99CH36351).

[12]  Edmund K. Burke,et al.  Hybrid evolutionary techniques for the maintenance scheduling problem , 2000 .

[13]  Peter Rossmanith,et al.  Simulated Annealing , 2008, Taschenbuch der Algorithmen.

[14]  N.P. Padhy,et al.  Unit commitment-a bibliographical survey , 2004, IEEE Transactions on Power Systems.

[15]  H.H. Zurn,et al.  Generator maintenance scheduling via successive approximations dynamic programming , 1975, IEEE Transactions on Power Apparatus and Systems.

[16]  S. M. Shahidehpour,et al.  Integrated generation and transmission maintenance scheduling with network constraints , 1997, Proceedings of the 20th International Conference on Power Industry Computer Applications.

[17]  Tharam S. Dillon,et al.  An Experimental Method of Determination of Optimal Maintenance Schedules in Power Systems Using the Branch-and-Bound Technique , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  S. M. Shahidehpour,et al.  Coordination between long-term and short-term generation scheduling with network constraints , 2000 .

[19]  M.C. Fu,et al.  Optimal preventive maintenance scheduling in semiconductor manufacturing , 2004, IEEE Transactions on Semiconductor Manufacturing.

[20]  J. R. McDonald,et al.  Modern heuristic techniques for scheduling generator maintenance in power systems , 2000 .

[21]  Roy Billinton,et al.  Maintenance Scheduling Optimization Using a Genetic Algorithm (GA) with a Probabilistic Fitness Function , 2004 .

[22]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[23]  Narayana Prasad Padhy,et al.  Discussion of "Optimal power flow by enhanced genetic algorithm" , 2003 .

[24]  G. Rand Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop , 1982 .

[25]  T. Numnonda,et al.  Unit commitment by parallel simulated annealing , 1995 .

[26]  Edmund K. Burke,et al.  Four Methods for Maintenance Scheduling , 1997, ICANNGA.

[27]  Z. Yamayee,et al.  A Computationally Efficient Optimal Maintenance Scheduling Method , 1983, IEEE Transactions on Power Apparatus and Systems.

[28]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .