Estimating the change point of the cumulative count of a conforming control chart under a drift

In a high quality process, the fraction of nonconforming is very low. In this area, standard Shewhart control charts are no longer useful. The Cumulative Count of Conforming (CCC) control charts, which enumerates the number of conforming items between the occurrences of two nonconforming ones, have been shown to be effective in the monitoring of high quality processes. When the CCC control chart signals an out-of-control condition, the process engineers should search for the source of the assignable causes. Knowing the exact time of the process change would help them to reduce the time for identification of the assignable causes. This paper provides a maximum likelihood estimator for the change point of the nonconforming level of the high quality process with a linear trend. Then, a Monte Carlo simulation is applied to evaluate the performance of the proposed estimator. In addition, the proposed estimator is compared with the MLE of the process fraction nonconforming, derived under a single step change. The results show that the proposed estimator outperforms the MLE designed for step change, when a linear trend disturbance is present in the process.

[1]  Joseph J. Pignatiello,et al.  Estimating the Change Point of the Process Fraction Non‐conforming with a Monotonic Change Disturbance in SPC , 2007, Qual. Reliab. Eng. Int..

[2]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[3]  Amirhossein Amiri,et al.  Change Point Estimation Methods for Control Chart Postsignal Diagnostics: A Literature Review , 2012, Qual. Reliab. Eng. Int..

[4]  Seyed Taghi Akhavan Niaki,et al.  Change-point estimation of the process fraction non-conforming with a linear trend in statistical process control , 2011, Int. J. Comput. Integr. Manuf..

[5]  Elsayed A. Elsayed,et al.  Drift time detection and adjustment procedures for processes subject to linear trend , 2006 .

[6]  Joseph J. Pignatiello,et al.  IDENTIFYING THE TIME OF A STEP-CHANGE IN THE PROCESS FRACTION NONCONFORMING , 2001 .

[7]  T. Calvin,et al.  Quality Control Techniques for "Zero Defects" , 1983 .

[8]  Joseph J. Pignatiello,et al.  A magnitude‐robust control chart for monitoring and estimating step changes for normal process means , 2002 .

[9]  Thong Ngee Goh,et al.  ON OPTIMAL SETTING OF CONTROL LIMITS FOR GEOMETRIC CHART , 2000 .

[10]  Joseph J. Pignatiello,et al.  Estimation of the Change Point of a Normal Process Mean in SPC Applications , 2001 .

[11]  James C. Benneyan,et al.  Statistical Control Charts Based on a Geometric Distribution , 1992 .

[12]  Marcus B. Perry,et al.  Identifying the time of polynomial drift in the mean of autocorrelated processes , 2010, Qual. Reliab. Eng. Int..

[13]  Joseph J. Pignatiello,et al.  Estimation of the Change Point of a Normal Process Mean with a Linear Trend Disturbance in SPC , 2006 .

[14]  Joseph J. Pignatiello,et al.  IDENTIFYING THE TIME OF A CHANGE IN A POISSON RATE PARAMETER , 1998 .

[15]  Thong Ngee Goh,et al.  The use of probability limits for process control based on geometric distribution , 1997 .

[16]  Joseph J. Pignatiello,et al.  Estimating the Change Point of a Poisson Rate Parameter with a Linear Trend Disturbance , 2006, Qual. Reliab. Eng. Int..

[17]  Lloyd S. Nelson,et al.  A Control Chart for Parts-Per-Million Nonconforming Items , 1994 .

[18]  John I. McCool,et al.  Control Charts Applicable When the Fraction Nonconforming is Small , 1998 .

[19]  Charles P. Quesenberry,et al.  Geometric Q Charts for High Quality Processes , 1995 .

[20]  Marcus B. Perry,et al.  Change point estimation for monotonically changing Poisson rates in SPC , 2007 .

[21]  Thong Ngee Goh,et al.  Control charts for processes subject to random shocks , 1995 .

[22]  Joseph J. Pignatiello,et al.  IDENTIFYING THE TIME OF A STEP CHANGE IN A NORMAL PROCESS VARIANCE , 1998 .

[23]  William H. Woodall,et al.  Control Charts Based on Attribute Data: Bibliography and Review , 1997 .

[24]  Rassoul Noorossana,et al.  Identifying the period of a step change in high‐yield processes , 2009, Qual. Reliab. Eng. Int..

[25]  Min Xie,et al.  Cumulative Count of Conforming (CCC) Chart , 2002 .

[26]  Thong Ngee Goh,et al.  Some procedures for decision making in controlling high yield processes , 1992 .

[27]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[28]  Joseph J. Pignatiello,et al.  IDENTIFYING THE TIME OF A STEP-CHANGE WITH X 2 CONTROL CHARTS , 1998 .