Estimating the change point of the cumulative count of a conforming control chart under a drift
暂无分享,去创建一个
[1] Joseph J. Pignatiello,et al. Estimating the Change Point of the Process Fraction Non‐conforming with a Monotonic Change Disturbance in SPC , 2007, Qual. Reliab. Eng. Int..
[2] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[3] Amirhossein Amiri,et al. Change Point Estimation Methods for Control Chart Postsignal Diagnostics: A Literature Review , 2012, Qual. Reliab. Eng. Int..
[4] Seyed Taghi Akhavan Niaki,et al. Change-point estimation of the process fraction non-conforming with a linear trend in statistical process control , 2011, Int. J. Comput. Integr. Manuf..
[5] Elsayed A. Elsayed,et al. Drift time detection and adjustment procedures for processes subject to linear trend , 2006 .
[6] Joseph J. Pignatiello,et al. IDENTIFYING THE TIME OF A STEP-CHANGE IN THE PROCESS FRACTION NONCONFORMING , 2001 .
[7] T. Calvin,et al. Quality Control Techniques for "Zero Defects" , 1983 .
[8] Joseph J. Pignatiello,et al. A magnitude‐robust control chart for monitoring and estimating step changes for normal process means , 2002 .
[9] Thong Ngee Goh,et al. ON OPTIMAL SETTING OF CONTROL LIMITS FOR GEOMETRIC CHART , 2000 .
[10] Joseph J. Pignatiello,et al. Estimation of the Change Point of a Normal Process Mean in SPC Applications , 2001 .
[11] James C. Benneyan,et al. Statistical Control Charts Based on a Geometric Distribution , 1992 .
[12] Marcus B. Perry,et al. Identifying the time of polynomial drift in the mean of autocorrelated processes , 2010, Qual. Reliab. Eng. Int..
[13] Joseph J. Pignatiello,et al. Estimation of the Change Point of a Normal Process Mean with a Linear Trend Disturbance in SPC , 2006 .
[14] Joseph J. Pignatiello,et al. IDENTIFYING THE TIME OF A CHANGE IN A POISSON RATE PARAMETER , 1998 .
[15] Thong Ngee Goh,et al. The use of probability limits for process control based on geometric distribution , 1997 .
[16] Joseph J. Pignatiello,et al. Estimating the Change Point of a Poisson Rate Parameter with a Linear Trend Disturbance , 2006, Qual. Reliab. Eng. Int..
[17] Lloyd S. Nelson,et al. A Control Chart for Parts-Per-Million Nonconforming Items , 1994 .
[18] John I. McCool,et al. Control Charts Applicable When the Fraction Nonconforming is Small , 1998 .
[19] Charles P. Quesenberry,et al. Geometric Q Charts for High Quality Processes , 1995 .
[20] Marcus B. Perry,et al. Change point estimation for monotonically changing Poisson rates in SPC , 2007 .
[21] Thong Ngee Goh,et al. Control charts for processes subject to random shocks , 1995 .
[22] Joseph J. Pignatiello,et al. IDENTIFYING THE TIME OF A STEP CHANGE IN A NORMAL PROCESS VARIANCE , 1998 .
[23] William H. Woodall,et al. Control Charts Based on Attribute Data: Bibliography and Review , 1997 .
[24] Rassoul Noorossana,et al. Identifying the period of a step change in high‐yield processes , 2009, Qual. Reliab. Eng. Int..
[25] Min Xie,et al. Cumulative Count of Conforming (CCC) Chart , 2002 .
[26] Thong Ngee Goh,et al. Some procedures for decision making in controlling high yield processes , 1992 .
[27] Begnaud Francis Hildebrand,et al. Introduction to numerical analysis: 2nd edition , 1987 .
[28] Joseph J. Pignatiello,et al. IDENTIFYING THE TIME OF A STEP-CHANGE WITH X 2 CONTROL CHARTS , 1998 .