Euclidean position estimation of features on a moving object using a single camera: a Lyapunov-based approach

In this paper, an adaptive nonlinear estimator is developed to identify the Euclidean coordinates of feature points on a moving object using a single fixed camera. No explicit model is used to describe the movement of the object. Homography-based techniques are used in the development of the object kinematics, while Lyapunov design methods are utilized in the synthesis of the adaptive estimator. Simulation results are included to demonstrate the performance of the estimator.

[1]  B. Ghosh,et al.  Visually guided ranging from observations of points, lines and curves via an identifier based nonlinear observer , 1995 .

[2]  Olivier Faugeras,et al.  Motion and Structure from Motion in a piecewise Planar Environment , 1988, Int. J. Pattern Recognit. Artif. Intell..

[3]  François Chaumette,et al.  2½D visual servoing , 1999, IEEE Trans. Robotics Autom..

[4]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[5]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[6]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[7]  François Chaumette,et al.  2 1/2 D Visual Servoing with Respect to Unknown Objects Through a New Estimation Scheme of Camera Displacement , 2000, International Journal of Computer Vision.

[8]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[9]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[11]  Warren E. Dixon,et al.  Navigation function based visual servo control , 2005 .

[12]  Xinkai Chen,et al.  State observer for a class of nonlinear systems and its application to machine vision , 2004, IEEE Transactions on Automatic Control.

[13]  John Oliensis,et al.  A Critique of Structure-from-Motion Algorithms , 2000, Comput. Vis. Image Underst..

[14]  Richard I. Hartley,et al.  In Defense of the Eight-Point Algorithm , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Warren E. Dixon,et al.  Nonlinear Control of Engineering Systems , 2002 .

[16]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[17]  A. Hanson,et al.  Scaled Euclidean 3D reconstruction based on externally uncalibrated cameras , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[18]  H. Kannan,et al.  Velocity and structure estimation of a moving object using a moving monocular camera , 2006, 2006 American Control Conference.

[19]  Warren E. Dixon,et al.  Identification of a moving object's velocity with a fixed camera , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[20]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[21]  Stefano Soatto,et al.  Structure from Motion Causally Integrated Over Time , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Xiaoming Hu,et al.  Active state estimation of nonlinear systems , 2004, Autom..

[23]  R. Chellappa,et al.  Recursive 3-D motion estimation from a monocular image sequence , 1990 .

[24]  Olivier Faugeras,et al.  Three-Dimensional Computer Vision , 1993 .

[25]  Jian Chen,et al.  2.5D visual servoing with a fixed camera , 2003, Proceedings of the 2003 American Control Conference, 2003..